ВУЗ:
Составители:
Рубрика:
(ii) eSLI 1 | SOBSTWENNOE ZNA^ENIE T , TO URAWNENIE () RAZRE[IMO,
ESLI FUNKCIQ g ORTOGONALXNA WSEM SOBSTWENNYM FUNKCIQM, PRINADLE-
VA]IM SOBSTWENNOMU ZNA^ENI@ 1.
3. pOLU^IM RE[ENIE URAWNENIQ (), ISPOLXZUQ SPEKTRALXNU@ TEOREMU
DLQ KOMPAKTNOGO SAMOSOPRQVENNOGO OPERATORA. pUSTX (fn ) | ORTONORMI-
ROWANNYJ BAZIS IZ SOBSTWENNYH WEKTOROW OPERATORA T I
X
T = n h; fnifn ; n 2 R; n ! 0;
n
| EGO PREDSTAWLENIE PO SPEKTRALXNOJ TEOREME 253.4. pUSTX
0 = fn 2 N j n = 0g; 1 = fn 2 N j n = 1g;
= Nn(0 [ 1):
rE[ENIE URAWNENIQ () I]EM W WIDE f = Pn nfn , GDE n = hf; fn i | NEIZ-
WESTNYE KO\FFICIENTY fURXE WEKTORA f . tOGDA RAWENSTWO (I ,T ) Pn n fn =
Phg; f if PEREPI[ETSQ W WIDE
n n
n
(I , T ) Pn n fn = nP
20
n (I , T )fn +
P (I , T )f
21 n
nP
n
P P
+ n2 n (I , T )fn = n2 n fn + n2 n (1 , n )fn
= P hg; f if + P hg; f if + P hg; f if :
0
n n n n n n
n20 n21 n2
s U^ETOM EDINSTWENNOSTI PREDSTAWLENIQ \LEMENTA RQDOM fURXE POLU^A-
EM W SLU^AE 2(i) (TOGDA 1 = ;):
8 hg; f i; ESLI n 2 ,
< n 0
n = : hg; fni ; ESLI n 2 .
1 , n
iSKOMOE RE[ENIE IMEET WID
X X
f = hg; fn ifn + (1 , n ),1hg; fn ifn:
n20 n2
w SLU^AE 2(ii) (TOGDA 1 6= ; I NEOBHODIMO hg; fn i = 0 (n 2 1)) ISKOMOE
RE[ENIE IMEET WID
X X X
f = hg; fn ifn + n fn + (1 , n ),1hg; fn ifn ;
n20 n21 n2
447
Страницы
- « первая
- ‹ предыдущая
- …
- 445
- 446
- 447
- 448
- 449
- …
- следующая ›
- последняя »
