ВУЗ:
Составители:
Рубрика:
oTMETIM NEKOTORYE SWOJSTWA ASIMPTOTI^ESKIH RAWENSTW.
2. f (x)
= g(x) (x ! a) TTOGDA f (x) = g(x) + o(g(x)) (x ! a).
f (x) = g(x) (x ! a) OZNA^AET, ^TO f (x) = g(x) + r(x), GDE r(x) =
[ fg((xx)) , 1]g(x), PRI^EM xlim r(x)
!a g (x) = xlim
f (x)
!a[ g (x) , 1] = 0. oBRATNO, f (x) =
g(x) + o(g(x)) (x ! a) WLE^ET
f (x) o(g(x))
xlim
!a g (x) = xlim !a[1 + g (x) ] = 1: >
3. eSLI f (x) = g(x) (x ! a) I SU]ESTWUET xlim !a g (x) (x), TO SU]EST-
WUET xlim !a f (x) (x) I xlim !a f (x) (x) = xlim !a g (x) (x).
dEJSTWITELXNO,
lim f ( x ) ( x ) = lim f (x) g(x) (x) = lim g(x) (x): >
x!a x!a g (x) x!a
4. aNALOGI^NO OPREDELQ@TSQ ASIMPTOTI^ESKIE RAWENSTWA, SOOTWET-
STWU@]IE WIDOIZMENENIQM PONQTIQM PREDELA FUNKCII (x20). dLQ NIH
TAKVE SPRAWEDLIWY SWOJSTWA 2, 3.
p R I M E R Y [ZAME^ATELXNYH \KWIWALENTNOSTEJ].
5. sin x
= x (x ! 0),
6. 1 , cos x = 12 x2 (x ! 0),
7. ln(1 + x) = x (x ! 0),
8. a , 1 = ln a x (x ! 0),
x
9. ex , 1
= x (x ! 0),
p
10. k 1+x,1 = kx (x ! 0).
5. |TO PRIMER 19.6.
6. iSPOLXZUQ P. 5, IMEEM
1 , cos x 2 sin2 x 2( 1 x)2
lim = xlim 2 = lim 2 = 1:
x!0 1 2 !0 1 2 x!0 1 2
2 x 2 x 2x
7. xlim ln(1 + x) = lim ln(1 + x)1=x = 1 (SM. 20.9, 19.8).
!0 x x!0
45
Страницы
- « первая
- ‹ предыдущая
- …
- 43
- 44
- 45
- 46
- 47
- …
- следующая ›
- последняя »
