ВУЗ:
Составители:
Рубрика:
BUDEM BRATX WEKTORY g WIDA th (t ! 0; t > 0). tOGDA DLQ DOSTATO^NO
j o( th ) j 0(f )h
MALYH t > 0 : kthk < 2kh0k . dLQ TAKIH t POLU^IM
0
f0)th + o(th) ]
(f0 + th) , (f0) = kthk[ k(th k kthk
0 (f )h o(th)
= kthk[ kh0k + kthk ]
kthk[ k(hf0k)h , jok(ththk)j ] > 0;
0
| PROTIWORE^IE S LOKALXNYM MAKSIMUMOM W TO^KE f0: >
3. p R I M E R. wERN EMSQ K PRIMERU 256.8. eSLI NA[ FUNKCIONAL
Zb
(x) = f (t; x(t)) dt OBLADAET LOKALXNYM \KSTREMUMOM W TO^KE x0, TO
a
Zb
0(x0)h = fv0 (t; x0(t))h(t) dt = 0 (h 2 C [a; b]):
a
oTS@DA SLEDUET, ^TO fv0 (t; x0(t)) = 0 (!!).
x258. oCENO^NAQ FORMULA lAGRANVA
pUSTX E; F | NORMIROWANNYE PROSTRANSTWA NAD POLEM (= C ILI
R); U ( E ) | OTKRYTO, OTREZOK [x; x + h] = fx + th j 0 t 1g
SODERVITSQ W U I OTOBRAVENIE A : U ! F DIFFERENCIRUEMO NA \TOM
OTREZKE. tOGDA
kA(x + h) , A(x)k sup kA0(x + h)k khk:
2[0;1]
pUSTX FUNKCIONAL ' 2 F PROIZWOLEN. pOLOVIM f (t) '(A(x+th)) (0
t 1). |TA ^ISLOWAQ FUNKCIQ ^ISLOWOGO ARGUMENTA DIFFERENCIRUEMA PO
t NA INTERWALE (0; 1) W SILU 256.7, PRI^EM f 0(t) = '(A0(x + th)h) (0 <
t < 1). pRIMENQQ K f FORMULU KONE^NYH PRIRA]ENIJ lAGRANVA, IMEEM
f (1) , f (0) = f 0() (0 < < 1); = ('), TO ESTX
j'(A(x + h) , A(x))j = j'(A0(x + h)h)j k'k sup kA0(x + h)k khk:
01
452
Страницы
- « первая
- ‹ предыдущая
- …
- 450
- 451
- 452
- 453
- 454
- …
- следующая ›
- последняя »
