Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 18 стр.

UptoLike

Составители: 

α
1
x
1
x
2
!
=
2 3
1 2
!
y
1
y
2
!
+
11
7
!
(
x
1
= 2y
1
3y
2
+ 11
x
2
= y
1
+ 2y
2
7
` Φ
α
α(`) : (2y
1
3y
2
+ 11) + 2(y
1
+ 2y
2
7) 3 = 0,
α(Φ) (y
1
+ 2y
2
7)
2
= 2y
1
3y
2
+ 11.
α
y
1
y
2
!
=
7 1
4 2
!
x
1
x
2
!
+
1
4
!
.
7 λ 1
4 2 λ
= 0
bα λ
1
= 3
λ
2
= 6
a
1
λ
1
= 3
(7 3)a
1
a
2
= 0 = a
1
= {1; 4}
4x
1
x
2
+ A
3
= 0 `
α
α
1
(
y
1
= 7x
1
x
2
+ 1
y
2
= 4x
1
+ 2x
2
+ 4
4y
1
y
2
+A
3
= 0 4(7x
1
x
2
+1)(4x
1
+2x
2
+4)+A
3
=
0 24x
1
6x
2
+ A
3
= 0
4x
1
x
2
+ A
3
= 0
+357,-* .3*-+35E-B5,0* α−1 0:**7 B0D
                       !                     !         !               !
                  x1                 2 −3         y1           11
                           =                               +
                  x2                −1 2          y2           −7
060                            (
                                   x1 = 2y 1 − 3y 2 + 11                   •GG‹
                                   x2 = −y 1 + 2y 2 − 7
’-D/75B688 235B,*,08 •GG‹ B 235B,*,08 .38:-” ` 0 .535+-6A Φ  .-62)0:
235B,*,08 0C -+35E-B .30 5„„0,,-: .3*-+35E-B5,00 α  5 0:*,,- 
           α(`) : (2y 1 − 3y 2 + 11) + 2(−y 1 + 2y 2 − 7) − 3 = 0,
           α(Φ) ~ (−y 1 + 2y 2 − 7)2 = 2y 1 − 3y 2 + 11.
  ªœZœ«œ Ý^ 5”70 0,B5305,7,A* .38:A* 5„„0,,-9- .3*-+35E-B5,08 α
                           !                !          !           !
                       1                           1
                    y                7 −1        x             1
                               =                           +           .
                    y2               4 2         x2            4
  ÈYÉY\]Y^ *‰58 C53517*30/70)*/1-* 235B,*,0*
                                   7 − λ −1
                                             =0
                                     4   2−λ
D68 60,*”,-9- -.*357-35 αb  ,5C-D0: *9- /-+/7B*,,A* E,5)*,08 λ1 = 3 
         
λ2 = 6 < -+/7B*,,A* B*17-3A  /--7B*7/7B2‡ˆ0* ¨70: /-+/7B*,,A: E,5 *
                                                                    )
,08: 8B68‡7/8 ,5.35B68‡ˆ0:0 B*17-35:0 0,B5305,7,AC .38:AC < *1
7-3 a1  /--7B*7/7B2‡ˆ0” E,5)*,0‡ λ1 = 3  8B68*7/8 3*‰*,0*: 235B,*,08
                                                    )
(7 − 3)a1 − a2 = 0 =⇒ a1 = {1; 4} < 7/‡D5 /6*D2*7 7- .*3B58 0,B530
5,7,58 .38:58 0:**7 235B,*,0* 4x1 − x2 + A3 = 0 < ’-/1-6>12 .38:58 `
0,B5305,7,5 -7,-/07*6>,- .3*-+35E-B5,08 α 7-9D5 0 7-6>1- 7-9D5 1-9D5
-,5 0,B5305,7,5 -7,-3/07*6>,- .3*-+35E-B5,08 α−1  7- D68 ,5C-“D*,08
.*3B-” 0,B5305,7,-” .38:-” .-D/75B0: BA35“*,08
                               (
                                   y 1 = 7x1 − x2 + 1
                                   y 2 = 4x1 + 2x2 + 4
B 235B,*,0* 4y1 −y2 +A3 = 0 < ’-62)5*: 4(7x1 −x2 +1)−(4x1 +2x2 +4)+A3 =
                                       )
0 ⇐⇒ 24x1 − 6x2 + A3 = 0 < 68 7-9-  7- +A .38:A* 4x1 − x2 + A3 = 0 0
                                     Î