Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 51 стр.

UptoLike

Составители: 

D(v)
v Φ
u V
n1
(D(v))
{u
j
} a
ij
v
i
x
j
= 0
M
0
(x
i
0
)
Φ ` x
i
= x
i
0
+ v
i
t
M
0
M
0
(x
i
0
) Φ F (x
i
0
) = 0
ϕ(v)t
2
+ F
i
(x
k
0
)v
i
t = 0.
M
0
(x
i
0
) ` Φ
t
1
= t
2
= 0
M
0
`
Φ
F
i
(x
k
0
)v
i
= 0 (a
ij
x
j
0
+ a
i n+1
)v
i
= 0.
M
0
Φ
F (M
0
) {F
1
(x
k
0
), . . . , F
n
(x
k
0
)}
F (M
0
)
A
n
F
i
0
(x
k
0
0
) = p
i
i
0
F
i
(x
k
0
)
M
0
T
M
0
Φ
v (60)
n1 V
n
Φ M
0
π
M
0
(Φ) M
0
Φ T
M
0
Φ
Φ M
0
π
M
0
(Φ)
F
i
(x
k
0
)(x
i
x
i
0
) = 0
(a
ij
x
j
0
+ a
i n+1
)(x
i
x
i
0
) = 0.
D05:*7356>,-” 90.*3.6-/1-/70 D(v) 7-9D5 0 7-6>1- 7-9D5 1-9D5 -, /-.38
“*, B*17-32 v -7,-/07*6>,- 90.*3.-B*3C,-/70 Φ <
    *”/7B07*6>,-  u ∈ Vn−1(D(v)) 7-9D5 0 7-6>1- 7-9D5 1-9D5 ,5+-3 *9-
1--3D0,57 {uj } 8B68*7/8 3*‰*,0*: -D,-3-D,-9- 235B,*,08 aij vixj = 0 
/--7B*7/7B2‡ˆ*9- ,*-D,-3-D,-:2 235B,*,0‡ •¶º‹< 
   ᜘œšY[¥\Y Ú]WYXW[—˜™—˜š] Ú]WYXW—›YX×\—˜š] ›š—X—Ú— W—X®Z™œ^
   ’2/7> 7-)15 M0(xi0) .30,5D6*“07 90.*3.-B*3C,-/70 Φ 0 ` ~ xi = xi0 + vit
F .38:58  .3-C-D8ˆ58 )*3*E M0 < ’-/1-6>12 M0(xi0) ∈ Φ  7- F (xi0) = 0  0
235B,*,0* •¶Š‹ .30,0:5*7 B0D
                            ϕ(v)t2 + Fi (xk0 )v i t = 0.                      •¶»‹
    -)12 M0(xi0) +2D*: ,5EAB57> nkgubgu 7-)1-” .*3*/*)*,08 ` 0 Φ  */60
235B,*,0* •¶»‹ 0:**7 DB5 /-B.5D5‡ˆ0C 1-3,8 t1 = t2 = 0 < 68 7-9-  )7-+A
7-)15 M0 +A65 DB-”,-” 7-)1-” .*3*/*)*,08 .38:-” ` ,*5/0:.7-70)*/1-9-
,5.35B6*,08 0 90.*3.-B*3C,-/70 Φ  ,*-+C-D0:- 0 D-/757-),-  )7-+A
                Fi (xk0 )v i = 0 060 (aij xj0 + ai n+1 )v i = 0.     •·H‹
   VWXYZY[Y\]Y^ ¢gsvj M xaemfegkmfrbghia Φ bjlckjmiht bmghg|guw mhoa
oabmubjt `gfdj ∇F (M0) h vggf nabjijda {F1(xk0 ), . . . , Fn(xk0 )} bm tkotmip
                             0


ht b}omkgu€
   ªœZœ«œ –Ë^ ’3-B*307>  )7- 60,*”,58 „-3:5 ∇F (M ) ,* E5B0/07 -7 BA
+-35 3*.*35 B An  5 0:*,,-  Fi (xk0 ) = pii Fi(xk0 ) <
                                                              0
                                      0


   VWXYZY[Y\]Y^ Æhoa igsvj M bmghg|jtw ig dbgymhikg T Φ kmvigp
                                 0              0



         n                        0
                                                                 n
fgk v w } gkomikgft{qar }fjkbmba{ (60) w tkotmiht eg efghifjbhikgd
                                                                      0M


fjldmfbghia n − 1 k Vn € Ðig egnefghifjbhikg bjlckjmiht vjhjimo‚bcd
kmvigfbcd efghifjbhikgd xaemfegkmfrbghia Φ k igsvm M0 €
   þaemfeoghvghi‚ πM (Φ) w efgrgntqjt smfml bmghg|}{ igsv} M0 xaemf p
egkmfrbghia Φ a adm{qjt bjefjkot{qmm egnefghifjbhikg TM Φ w bjlcp
                       0



kjmiht vjhjimo‚bgu xaemfeoghvghi‚{ xaemfegkmfrbghia Φ k igsvm M0 €
                                                                          0



   E •·H‹ /6*D2*7 )7- 15/57*6>,58 90.*3.6-/1-/7> π (Φ) 0:**7 235B,*
,0*
                                                              M
                                                              0




           F (xk )(xi − xi ) = 0 060 (a xj + a
            i   0       0                      ij 0      )(xi − xi ) = 0.
                                                      i n+1       0
                                                                           •·Š‹
                                          ÀÕ