Неопределенный интеграл. Варианты заданий для практических занятий. Сирота Ю.Н. - 28 стр.

UptoLike

Составители: 

Ɉɬɜɟɬɵ ɤ ɢɧɞɢɜɢɞɭɚɥɶɧɵɦ ɡɚɞɚɧɢɹɦ ɩɨ ɬɟɦɟ
«ɇȿɈɉɊȿȾȿɅȿɇɇɕɃ ɂɇɌȿȽɊȺɅ»
ȼɚɪɢɚɧɬ ʋ 1
,1)  4()arcsin 2 x 5()ln x 4e
e
()4
x
,2) ()  3 x
3
2 x
2
x ()ln 8 xx()  1 xx
2
,,,3) 4e
e
()sin 7 x
4)  3( )ln x 5
4
x 5
5( )ln x 1
,5)  4( )ln  x
2
4 x 518 ( )arctg x 2
1
3
()ln x 1
,6)  x
2
2 x x
2
2 xx ()arcsin 1 x
,7) ()  35x
2
3 x   21 x
2
10 x 2
§
©
¨
¨
·
¹
¸
¸
arcsin 
x
2
5
2
,8)  
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
33
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
33
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
,9)  2
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
3
6

§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
6
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
,10)  6
§
©
¨
¨
¨
·
¹
¸
¸
¸
ln  
§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
2
§
©
¨
¨
·
¹
¸
¸
tg
x
2
10 2
§
©
¨
¨
·
¹
¸
¸
arctg 
1
3
§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
3
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
______________________________________________________
ȼɚɪɢɚɧɬ ʋ 2
,1)  4()ln
x
3()cos
x
4()arcsin 2
x
,2)   
1
2
()ln 19x
2
1
18
()9 x
2
54 x ()arcctg 3 x
x
6
1
18
()arctg 3 x
,,,3) 6 ()arcsin 6 x4)  3( )ln x 32( )ln 1 x 2( )ln x 1
,5)  
3
2
()ln 12x 2( )ln  x
2
6 x 13 4
§
©
¨
¨
·
¹
¸
¸
arctg 
x
2
3
2
,6)   x
2
4 x 40 x 2  x
2
4 x 40 36
§
©
¨
¨
¨
·
¹
¸
¸
¸
ln  
x
6
1
3
 x
2
4 x 40
6
,7) 2( )ln  x 3  x
2
6 x 8( )  4 x
2
x 1  x
2
6 x 8
,8)  
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
3
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
,9)  
6

§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
4
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
22
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
,10) 
§
©
¨
¨
¨
·
¹
¸
¸
¸
ln  
§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
4
§
©
¨
¨
·
¹
¸
¸
tg
x
2
53
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
______________________________________________________
ȼɚɪɢɚɧɬ ʋ 3
,1)  5()cos 3 x 10 x 5
§
©
¨
¨
·
¹
¸
¸
arcsin
7
x
4
,2) e
()6
x
()  94x 7 x
2
,,,3) 8 ()arcctg 6 x4)  
1
x 5
3( )ln x 23( )ln x 5
,5)  2( )ln  x
2
8 x 20 16
§
©
¨
¨
·
¹
¸
¸
arctg 
x
2
23( )ln 1 x
,6)  
 21 x
2
4 xx 2  21 x
2
4 x 25
§
©
¨
¨
·
¹
¸
¸
arcsin 
x
5
2
5
,7) ()  3 x
2
3 x  3 x
2
4 x ()arcsin x 2
,8)  3
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
22
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
,9)  
4

§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
2
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
42
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
,10)  4
§
©
¨
¨
¨
·
¹
¸
¸
¸
ln  
§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
4
§
©
¨
¨
·
¹
¸
¸
tg
x
2
524
§
©
¨
¨
·
¹
¸
¸
arctg 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
23
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
______________________________________________________
ȼɚɪɢɚɧɬ ʋ 4
,1)

6 x 4()ln x 2()cos 4 x
,2)   
1
36
()  60 x
3
90 x
2
144 x ()ln 6 x
5 x
3
9
5 x
2
4
4 x
,,,3) 6ee
()arcctg 8
x
4)  ()ln 3 x 3( )ln x 32( )ln x 5
,5)

()ln 
x
2
4 x 54 ( )arctg
x 2( )ln
12x
,6)  
 x
2
10 x 16 x 5  x
2
10 x 16 9 ( )ln  x 5  x
2
10 x 16
,7) 2( )ln  3 x  10 6 xx
2
() 14x 5 x
2
 10 6 xx
2
,8)  3
§
¨
¨
·
¸
¸
ln 
§
¨
¨
·
¸
¸
tg
x
2
3
§
¨
¨
·
¸
¸
ln 
§
¨
¨
·
¸
¸
tg
x
2
1
§
¨
¨
·
¸
¸
ln 
§
¨
¨
·
¸
¸
tg
x
2
2
,9)  2
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
4

§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
2
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
,10)  6
§
©
¨
¨
¨
·
¹
¸
¸
¸
ln  
§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
4
§
©
¨
¨
·
¹
¸
¸
tg
x
2
13 12
§
©
¨
¨
·
¹
¸
¸
arctg 
1
3
§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
3
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
______________________________________________________
ȼɚɪɢɚɧɬ ʋ 5
,1)  4ee
()
2
x
()cos 3 x 2()sin 3 x
,2) 
()x 4 1 x
2
2
()arcsin x
§
©
¨
¨
·
¹
¸
¸
 2 xx
2
1
2
,,,3) 8
()arccos 4 x4)  
3
x 4
2( )ln x 1()ln x 4
,5)

()ln
x 36( )ln

x
2
4 x 13
,6)  x
2
10 xx 5 x
2
10 x 25
§
©
¨
¨
·
¹
¸
¸
arcsin 
x
5
1
,7) () 35x
2
4 x  15 x
2
2 x 5
§
©
¨
¨
·
¹
¸
¸
arcsin 
x
4
1
4
,8)  3
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
33
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
22
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
,9)  4
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
4
2

§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
4
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
1
,10)  
§
©
¨
¨
·
¹
¸
¸
ln 
§
©
¨
¨
·
¹
¸
¸
tg
x
2
212
§
©
¨
¨
¨
·
¹
¸
¸
¸
ln  
§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
4
§
©
¨
¨
·
¹
¸
¸
tg
x
2
13 18
§
©
¨
¨
·
¹
¸
¸
arctg 
1
3
§
©
¨
¨
·
¹
¸
¸
tg
x
2
2
3
______________________________________________________
ȼɚɪɢɚɧɬ ʋ 6
,1)  8 x 2ee
()
2
x
()sin 2 x
,2) e
()
7
x
() 34x 2 x
2
,,,3) 8ee
()arcsin 6
x
4)  2( )ln 3 x 2( )ln x 23( )ln x 6