Теоретическая механика для студентов ФИТО. Смогунов В.В - 157 стр.

UptoLike

Рубрика: 

157
3.
Составим для механизма уравнение, выражающее принцип
возможных перемещений:
0
4211
=
δ
+
δ
ϕ
δϕ
B
sFMM
или, заменяя δφ
4
и δ
s
B
их значениями и вынося одновременно δφ
1
за
скобки:
()
08,0
30cos
2
1
4
11
211
=δϕλ+
δϕ
δϕ c
l
l
MM
o
или
()
08,0
30cos
2
4
1
21
=λ+ c
l
l
MM
o
.
Отсюда определим деформацию пружины
()
04,0
8,0
30cos
2
4
1
21
=
+
=λ
c
l
l
MM
o
м
Ответ: λ = 0,04 м. Знак указывает, что пружина растянута.
Пример 15. Механическая система (рисунок 66) состоит из барабана
1 радиуса R
1
, к которому приложена пара сил с моментом М, и катка 5
радиуса R
5
(барабан и катокоднородные цилиндры); веса всех тел равны
соответственно P
1
, P
5
. На барабан намотана нить, к концу K которой
присоединена пружина КD. Другой конец пружины прикреплен к катку 5 в
точке D. Коэффициент жесткости пружины равен с. Система начинает
движение из состояния покоя, пружина в этот момент не деформирована.
Дано: M = PR, P
1
= P, P
5
= 4P, R
1
= R
5
= R.
Определить:
x = f(t), где худлинение пружины (или перемещение
центра D катка по отношению к поверхности, по которой он катится), а
также частоту k и период τ колебаний катка.
     3.        Составим для механизма уравнение, выражающее принцип
возможных перемещений:
                                 M 1δϕ1 − M 2δϕ4 + Fδs B = 0

или, заменяя δφ4 и δsB их значениями и вынося одновременно δφ1 за
скобки:

                  2l1δϕ1                                          l1
M 1δϕ1 − M 2               + cλ ⋅ 0,8δϕ1 = 0 или M 1 − 2 M 2            + 0,8cλ = 0 .
                    ( )
               l4 cos 30 o
                                                                  ( )
                                                             l4 cos 30o

     Отсюда определим деформацию пружины

                                                  l1
                                 − M 1 + 2M 2
                            λ=
                                                   ( )
                                             l4 cos 30o
                                                        = 0,04 м
                                          0,8c

     Ответ: λ = 0,04 м. Знак указывает, что пружина растянута.


     Пример 15. Механическая система (рисунок 66) состоит из барабана
1 радиуса R1 , к которому приложена пара сил с моментом М, и катка 5
радиуса R5 (барабан и каток – однородные цилиндры); веса всех тел равны
соответственно P1, P5. На барабан намотана нить, к концу K которой
присоединена пружина КD. Другой конец пружины прикреплен к катку 5 в
точке D. Коэффициент жесткости пружины равен с. Система начинает
движение из состояния покоя, пружина в этот момент не деформирована.

     Дано: M = PR, P1 = P, P5 = 4P, R1 = R5 = R.

     Определить: x = f(t), где х – удлинение пружины (или перемещение
центра D катка по отношению к поверхности, по которой он катится), а
также частоту k и период τ колебаний катка.




                                         157