Геометрия Лобачевского и ее применение в специальной теории относительности. Часть 2. Сосов Е.Н. - 10 стр.

UptoLike

Составители: 

Рубрика: 

B =
V
c
x
0
= Γ(ˆx
0
+ Bˆx
1
), x
1
= Γ(Bˆx
0
+ ˆx
1
), x
2
= ˆx
2
, x
3
= ˆx
3
,
Γ = (1 B
2
)
1/2
.
ˆx
0
= Γ(x
0
Bx
1
), ˆx
1
= Γ(Bx
0
+ x
1
), ˆx
2
= x
2
, ˆx
3
= x
3
.
B =
V
c
<< 1
t =
ˆ
t, x
1
= V
ˆ
t + ˆx
1
, x
2
= ˆx
2
, x
3
= ˆx
3
.
ˆ
K
K
V
B =
V
c
|B| 6= 0
e B = |B|e x R
4
x
1
e = (e, x)e =
(B, x)B
B
2
, x
2
= x x
1
e = x
(B, x)B
B
2
.
x
1
x
1
ˆx
0
= Γ(x
0
(B, x)).
x
2
ˆx = ˆx
1
e + ˆx
2
= Γ(Bx
0
+ x
1
e) + x
2
=
Γ(Bx
0
+
(B, x)B
B
2
) + x
(B, x)B
B
2
= Γ(x Bx
0
) + 1)(
(B, x)B
B
2
x).
ˆx
0
= Γ(x
0
(B, x)), ˆx = Γ(x Bx
0
) +
1)[B, [B, x]]
B
2
=
Γ
B
2
(((B, x) B
2
x
0
)B + (B
2
x (B, x)B)
p
1 B
2
).
ãäå B = Vc óñëîâíî áóäåì íàçûâàòü ïðèâåäåííîé ñêîðîñòüþ. Òîãäà
ïðåîáðàçîâàíèÿ êîîðäèíàò ìîæíî íàïèñàòü â âèäå

   x0 = Γ(x̂0 + B x̂1 ),        x1 = Γ(B x̂0 + x̂1 ),           x2 = x̂2 ,        x3 = x̂3 ,
ãäå Γ = (1 − B 2 )−1/2 . Ýòè ïðåîáðàçîâàíèÿ íàçûâàþòñÿ ïðåîáðàçîâàíèÿ-
ìè Ëîðåíöà.
  Îáðàòíûå ïðåîáðàçîâàíèÿ Ëîðåíöà íåòðóäíî íàéòè. Îíè èìåþò âèä

   x̂0 = Γ(x0 − Bx1 ),         x̂1 = Γ(−Bx0 + x1 ),              x̂2 = x2 ,        x̂3 = x3 .
Åñëè B = Vc << 1, òî, îòáðàñûâàÿ ìàëûå âåëè÷èíû, èç ïðåîáðàçîâàíèé
Ëîðåíöà ïðèáëèæåííî ïîëó÷èì ïðåîáðàçîâàíèÿ Ãàëèëåÿ

             t = t̂,       x1 = V t̂ + x̂1 ,       x2 = x̂2 ,        x3 = x̂3 .
   Íàéäåì ïðåîáðàçîâàíèÿ Ëîðåíöà â îáùåì ñëó÷àå, êîãäà ÈÑÎ K̂ äâè-
æåòñÿ îòíîñèòåëüíî ÈÑÎ K ñ ïîñòîÿííîé ñêîðîñòüþ, îïðåäåëÿåìîé âåê-
òîðîì V .
   Òåïåðü B = Vc  âåêòîð, îïðåäåëÿþùèé ïðè |B| =  6 0 åäèíè÷íûé âåêòîð
e, ò.å. B = |B|e. Òîãäà äëÿ êàæäîãî âåêòîðà x ∈ R 4


                            (B, x)B                                      (B, x)B
        x1 e = (e, x)e =            ,          x 2 = x − x1 e = x −              .
                              B2                                           B2
Êîìïîíåíòà x1 òåïåðü èãðàåò ðîëü êîîðäèíàòû x1 èç ïðåäûäóùåãî ïðèìå-
ðà, ïîýòîìó
                                x̂0 = Γ(x0 − (B, x)).
Ó÷èòûâàÿ, ÷òî îðòîãîíàëüíûé ê íàïðàâëåíèþ ñêîðîñòè âåêòîð x2 íå èç-
ìåíÿåòñÿ, ïîëó÷èì

                       x̂ = x̂1 e + x̂2 = Γ(−Bx0 + x1 e) + x2 =
          (B, x)B         (B, x)B                           (B, x)B
Γ(−Bx0 +          ) + x −         = Γ(x − Bx 0
                                               ) + (Γ − 1)(         − x).
            B2              B2                                B2
Òàêèì îáðàçîì, â îáùåì ñëó÷àå ïðåîáðàçîâàíèÿ Ëîðåíöà èìåþò âèä
                                                (Γ − 1)[B, [B, x]]
     x̂0 = Γ(x0 − (B, x)),          x̂ = Γ(x − Bx0 ) +             =
                                                       B2
            Γ              2 0       2
                                                   p
               (((B, x) − B x )B + (B x − (B, x)B) 1 − B 2 ).
            B2
                                               9