Геометрия Лобачевского и ее применение в специальной теории относительности. Часть 2. Сосов Е.Н. - 12 стр.

UptoLike

Составители: 

Рубрика: 

β =
v
c
=
dx
dx
0
.
ˆ
K(
ˆ
O; < ˆx
0
= c
ˆ
t; ˆx >) K(O; < x
0
=
ct; x >) V Ox
1
Ox
2
||
ˆ
Oˆx
2
Ox
3
||
ˆ
Oˆx
3
dx
0
= Γ(dˆx
0
+Bdˆx
1
), dx
1
= Γ(Bdˆx
0
+dˆx
1
), dx
2
= dˆx
2
, dx
3
= dˆx
3
.
β
1
=
ˆ
β
1
+ B
1 + B
ˆ
β
1
, β
2
=
ˆ
β
2
1 B
2
1 + B
ˆ
β
1
, β
3
=
ˆ
β
3
1 B
2
1 + B
ˆ
β
1
.
dˆx
0
= Γ(dx
0
(B, dx)), dˆx = Γ(dx Bdx
0
) +
1)[B, [B, dx]]
B
2
=
Γ
B
2
(((B, dx) B
2
dx
0
)B + (B
2
dx (B, dx)B)
p
1 B
2
).
ˆ
β =
β B +
(1 Γ
1
)[B, [B, β]]
B
2
1 (B, β)
=
((B, β) B
2
)B + (B
2
β (B, β)B)
1 B
2
B
2
(1 (B, β))
.
ˆ
β
2
=
(β B)
2
[B, β]
2
(1 (B, β))
2
=
(1 (B, β))
2
(1 β
2
)(1 B
2
)
(1 (B, β))
2
,
1
ˆ
β
2
=
(1 β
2
)(1 B
2
)
(1 (B, β))
2
.
ˆ
β = g
1
B
(β)
ρ(0,
ˆ
β) = ρ(0, g
1
B
(β)) = ρ(g
1
B
(g
B
(0)), g
1
B
(β)) = ρ(B, β).
Ðàññìîòðèì òàêæå âåêòîð-ôóíêöèþ
                                                  v  dx
                                             β=     = 0.
                                                  c  dx
Ïóñòü ÈÑÎ K̂(Ô; < x̂0 = ct̂; x̂ >) äâèæåòñÿ îòíîñèòåëüíî K(O; < x0 =
ct; x >) ñ ïîñòîÿííîé ñêîðîñòüþ V âäîëü îñè Ox1 òàê, ÷òî Ox2 ||Ôx̂2 ,
Ox3 ||Ôx̂3 .
   Èç ïðåîáðàçîâàíèé Ëîðåíöà íàéäåì
dx0 = Γ(dx̂0 +Bdx̂1 ),               dx1 = Γ(Bdx̂0 +dx̂1 ),         dx2 = dx̂2 ,            dx3 = dx̂3 .
Ñëåäîâàòåëüíî,
                                                   √                         √
                    β̂ 1 + B                   β̂ 2 1 − B 2              β̂ 3 1 − B 2
             β1 =                ,    β2 =                    ,   β3 =                  .
                    1 + B β̂ 1                  1 + B β̂ 1                1 + B β̂ 1
Äëÿ îáùåãî ïðåîáðàçîâàíèÿ Ëîðåíöà ïîëó÷èì
                                                      (Γ − 1)[B, [B, dx]]
 dx̂0 = Γ(dx0 − (B, dx)),                    dx̂ = Γ(dx − Bdx0 ) +        =
                                                              B2
         Γ                2   0         2
                                                        p
          2
            (((B, dx) − B   dx  )B + (B   dx − (B, dx)B)  1 − B 2 ).
        B
Ñëåäîâàòåëüíî,
                                         (1 − Γ−1 )[B, [B, β]]
                             β−B+
                        β̂ =                     B2            =
                                         1 − (B, β)
                                                           √
                    ((B, β) − B 2 )B + (B 2 β − (B, β)B) 1 − B 2
                                                                 .
                                    B 2 (1 − (B, β))
Êðîìå òîãî,

         2  (β − B)2 − [B, β]2   (1 − (B, β))2 − (1 − β 2 )(1 − B 2 )
       β̂ =                    =                                      ,
               (1 − (B, β))2               (1 − (B, β))2
                                  (1 − β 2 )(1 − B 2 )
                                         2
                         1 − β̂ =                      .
                                    (1 − (B, β))2
Ýòè ôîðìóëû ìîæíî ïîëó÷èòü è ñ ïîìîùüþ ôîðìóë ïëàíèìåòðèè Ëîáà-
÷åâñêîãî ñëåäóþùèì îáðàçîì. Ïàðàëëåëüíûé ïåðåíîñ ÿâëÿåòñÿ èçîìåòðè-
           −1
åé è β̂ = gB  (β), ñëåäîâàòåëüíî,
          ρ(0, β̂) = ρ(0, gB−1 (β)) = ρ(gB−1 (gB (0)), gB−1 (β)) = ρ(B, β).

                                                   11