ВУЗ:
Рубрика:
11
1.2 Естественный способ задания движения точки
Название способа связано с системой координат, которая
используется для определения кинематических характеристик движения –
это оси естественного трехгранника: касательная
(
)
τ
, нормаль
(
)
n и
бинормаль
(
)
b .
Положение точки на траектории определяют дуговой координатой
(рисунок 3). При этом задаются началом отсчета и устанавливают
направление отсчета дуговой координаты. Дуговая координата является
функцией времени (законом движения)
()
tss = .
Таким образом, для задания движения точки естественным способом
необходимо указать:
− траекторию точки;
− начало отсчета;
− закон движения точки по траектории.
Такой способ задания движения применяется обычно, если известна
траектория.
Скорость характеризует изменение дуговой координаты с течением
времени. Алгебраическая величина скорости точки
dt
ds
v
= .
Направлен вектор мгновенной скорости по касательной к траектории
с учетом знака результата дифференцирования, так как ось
τ направлена в
сторону увеличения дуговой координаты.
Ускорение определяют в проекциях на оси естественного
трехгранника
1.2 Естественный способ задания движения точки
Название способа связано с системой координат, которая
используется для определения кинематических характеристик движения –
это оси естественного трехгранника: касательная (τ ) , нормаль (n ) и
бинормаль (b ) .
Положение точки на траектории определяют дуговой координатой
(рисунок 3). При этом задаются началом отсчета и устанавливают
направление отсчета дуговой координаты. Дуговая координата является
функцией времени (законом движения)
s = s(t ) .
Таким образом, для задания движения точки естественным способом
необходимо указать:
− траекторию точки;
− начало отсчета;
− закон движения точки по траектории.
Такой способ задания движения применяется обычно, если известна
траектория.
Скорость характеризует изменение дуговой координаты с течением
времени. Алгебраическая величина скорости точки
ds
v= .
dt
Направлен вектор мгновенной скорости по касательной к траектории
с учетом знака результата дифференцирования, так как ось τ направлена в
сторону увеличения дуговой координаты.
Ускорение определяют в проекциях на оси естественного
трехгранника
11
Страницы
- « первая
- ‹ предыдущая
- …
- 9
- 10
- 11
- 12
- 13
- …
- следующая ›
- последняя »
