ВУЗ:
Составители:
22
-4-2024
-0.8
-0.4
0
0.4
0.8
-4 -2 0 2 4
-0.8
-0.4
0
0.4
0.8
-4-2024
-0.8
-0.4
0
0.4
0.8
-4 -2 0 2 4
-0.8
-0.4
0
0.4
0.8
Рис.2.4. Графики функции Габора
γ
5
,0
(t) (
ω
0
=1, ρ=1,τ
0
= π
2 ):
Re
γ
5
,0
(t) – жирная линия, Im
γ
5
,0
(t) – тонкая линия.
частотно-временное представление преобразования Габора
иллюстрирует рис. 2.5. На рисунке 2.5(a) видно, что фазовая
плоскость покрыта прямоугольниками со сторонами
и
.
Разложение сигнала по базису (2.19) называется дискретным
преобразованием Габора.
Рис. 2.4. Дискретное преобразование Габора.
(а) Частотно-временное представление преобразования Габора,
(b) Частотно-временное представление тестового
сигнала в базисе Габора,
(c) Некоторый тестовый сигнал.
Глава 3. Wavelet-преобразование
В зависимости от вида анализирующей функции фазовая
плоскость разбивается прямоугольниками, имеющими различные
0.8 0.4 0 -0.4 -4 -2 0 2 4 -0.8 Рис.2.4. Графики функции Габора γ5,0(t) (ω0=1, ρ=1,τ0= 2π ): Re γ5,0(t) – жирная линия, Im γ5,0(t) – тонкая линия. частотно-временное представление преобразования Габора иллюстрирует рис. 2.5. На рисунке 2.5(a) видно, что фазовая плоскость покрыта прямоугольниками со сторонами и . Разложение сигнала по базису (2.19) называется дискретным преобразованием Габора. Рис. 2.4. Дискретное преобразование Габора. (а) Частотно-временное представление преобразования Габора, (b) Частотно-временное представление тестового сигнала в базисе Габора, (c) Некоторый тестовый сигнал. Глава 3. Wavelet-преобразование В зависимости от вида анализирующей функции фазовая плоскость разбивается прямоугольниками, имеющими различные 22
Страницы
- « первая
- ‹ предыдущая
- …
- 20
- 21
- 22
- 23
- 24
- …
- следующая ›
- последняя »