Составители:
Рубрика:
136
как S
отс
Z
для полусечения (отсечение проводится через точку К,
находящуюся на центральной оси Z) имеет максимальное значе-
ние (рис. 7.11в):
S
отс(K) отс отс
Z0
hh
Ау b
24
=⋅=⋅⋅=
11,5
3
23 11,5 3042см ;⋅⋅ =
b
к
= b = 11,5 см. А
отс
= b
h
2
⋅ ; y
отс
0
=
h
4
.
63
84 2
мах
33
S
20кН 3042 10 м
93280 10 м 11,5 10 м
0,57 10 кПа R510кПа.
−
−−
⋅
τ= ⋅ =
⋅⋅
=⋅ <=⋅
Z
У
0
Эпюра
τ
b
τ
max
К
А
отс
Рис. 7.11
Y
а)
б
)
в)
h
h
2
Эпюра σ
–
+
–
Прочность по касательным напряжениям обеспечена с
большим запасом.
2.
Балка сплошного круглого сечения, ма-
териал – дерево, R 10 МПа.
=
Требуемый осевой момент сопротивле-
ния берем из предыдущего расчета, так как
он не зависит от формы сечения
.см 4000W
3
TP
Z
=
Осевой момент сопротивления для круглого сечения:
d
Z
Y
137
43
Z
Z
max
I
dd
W,
d
у 32
64
2
ππ
===
⋅
где
max
d
у .
2
=
Из условия
TP
ZZ
WW=
имеем:
,см 4000
32
d
3
3
=
π
отсюда – d34,4 см 0,344 м.
=
=
Округляя, примем d = 0,35 м.
Проверим прочность подобранного сечения по нормальным
напряжениям:
33
33
Z
d0,35
W4,2110 м .
32 32
−
ππ⋅
== =⋅
3
max
max
-3 3
Z
M
40 кН м
9,5 10 кПа <R.
W4,2110 м
⋅
σ= = = ⋅
⋅
Прочность балки по нормальным напряжениям обеспечена.
Небольшое недонапряжение (–5 %) объясняется округлением
диаметра в большую сторону.
Наибольшая ширина данного сечения d находится на цен-
тральной оси, значит максимальные касательные напряжения
будут небольшими, поэтому для данного сечения проверку по
касательным напряжениям можно не производить.
3.
Балка из прокатного двутавра (см. рис. 7.7г).
Из условия прочности по нормальным напряжениям опре-
деляем требуемое значение осевого момента сопротивления:
TP 3 3 3
max
Z
3
M
40 кН м
W0,210 м 200 см .
R 200 10 кПа
−
⋅
== =⋅ =
⋅
Из таблицы сортаментов по ГОСТ 8239-89 для стального
проката находим двутавр, имеющий близкий к требуемому осе-
вой момент сопротивления:
Двутавр № 20,
.м 10184см 184W
363
Z
−
⋅==
Проверим прочность этого двутавра:
3
max
max
-6 3
Z
M
40 кН м
218 10 кПа R.
W 184 10 м
⋅
σ
== =⋅ >
⋅
Определим процент перенапряжения.
как S отс для полусечения (отсечение проводится через точку К, IZ πd 4 πd 3 d
Z
WZ = = = , где у max = .
находящуюся на центральной оси Z) имеет максимальное значе- у max 64 ⋅ d 32 2
ние (рис. 7.11в): 2
h h Из условия WZ = WZ TP имеем:
S отс(K)
Z = А отс ⋅ уотс
0 = b⋅ ⋅ = 11,5 ⋅23 ⋅11,5 = 3042 см 3 ;
2 4 πd 3
h h = 4000 см 3 , отсюда – d = 34, 4 см = 0,344 м.
b к = b = 11,5 см. Аотс = b ⋅ ; y отс
0 = . 32
2 4 Округляя, примем d = 0,35 м.
20кН 3042 ⋅10−6 м3 Проверим прочность подобранного сечения по нормальным
τ мах = ⋅ =
93280 ⋅10−8 м 4 11,5 ⋅10−2 м напряжениям:
= 0,57 ⋅103 кПа < R S = 5 ⋅103 кПа. πd 3 π ⋅ 0,353
WZ = = = 4, 21⋅10−3 м3 .
32 32
а) б) в)
Y Аотс M max 40 кН ⋅ м
Эпюра σ Эпюра τ σ max = = = 9,5 ⋅ 103 кПа < R.
WZ 4, 21 ⋅ 10 м
-3 3
+ Прочность балки по нормальным напряжениям обеспечена.
h
Небольшое недонапряжение (–5 %) объясняется округлением
2 Z –
У0
τmax
диаметра в большую сторону.
h К Наибольшая ширина данного сечения d находится на цен-
тральной оси, значит максимальные касательные напряжения
–
будут небольшими, поэтому для данного сечения проверку по
касательным напряжениям можно не производить.
b 3. Балка из прокатного двутавра (см. рис. 7.7г).
Рис. 7.11 Из условия прочности по нормальным напряжениям опре-
деляем требуемое значение осевого момента сопротивления:
Прочность по касательным напряжениям обеспечена с M max 40 кН ⋅ м
большим запасом. WZ TP = = = 0, 2 ⋅ 10−3 м3 = 200 см3 .
R 200 ⋅ 10 кПа
3
Y Из таблицы сортаментов по ГОСТ 8239-89 для стального
2. Балка сплошного круглого сечения, ма-
проката находим двутавр, имеющий близкий к требуемому осе-
териал – дерево, R = 10 МПа. d
вой момент сопротивления:
Требуемый осевой момент сопротивле- Z
Двутавр № 20, WZ = 184 см 3 = 184 ⋅ 10 −6 м 3 .
ния берем из предыдущего расчета, так как
TP Проверим прочность этого двутавра:
он не зависит от формы сечения W Z = 4000 см 3 . M max 40 кН ⋅ м
Осевой момент сопротивления для круглого сечения: σ max = = = 218 ⋅ 103 кПа > R.
WZ 184 ⋅ 10 м
-6 3
Определим процент перенапряжения.
136 137
Страницы
- « первая
- ‹ предыдущая
- …
- 67
- 68
- 69
- 70
- 71
- …
- следующая ›
- последняя »
