Введение в спектроскопию диэлектриков. Часть II. Вторичные процессы. Васильев А.Н - 157 стр.

UptoLike

ðàñ ïðå äå ëå íèÿ ñòà íî âèò ñÿ ãëàä êîé ñ ñó ùå ñò âåí íûì âîç ðà ñ òà -
íè åì äîëè íèç êî ýíåð ãå òè ÷å ñêèõ ýëåê ò ðî íîâ (ðèñ. 34ã).
Óðàâ íå íèå äëÿ ôóí ê öèè ðàñ ïðå äå ëå íèÿ â ýòèõ óïðî ùåí -
íûõ ïðè áëè æå íè ÿõ ìî æåò áûòü ðå øå íî àíà ëè òè ÷å ñêè. Çäåñü
ìû ïðè âå äåì ðå øå íèå òî ëü êî äëÿ áåñ ôî íîí íî ãî ñëó ÷àÿ
(11.13). Ââå äåì áåç ðàç ìåð íóþ ýíåð ãèþ
x E E
g
=
. Êâàí òî âûé
âû õîä ïðè ýòîì ïîä ÷è íÿ åò ñÿ óðàâ íå íèþ
h h( ) ( ) ,x
x
x dx x
x
=
-
¢ ¢ ³
-
ò
2
2
2
1
1
,
ãäå
x¢
áåç ðàç ìåð íàÿ ýíåð ãèÿ âòî ðè÷ íûõ âîç áóæ äå íèé. Ïðî -
èç âî äÿ ïðå îá ðà çî âà íèå Ëàï ëà ñà
y h( ) ( )
( )
t x e dx
x t
=
- -
¥
ò
1
1
,
157
g
E 2E E
g
g
g
g
E2EE
g
g
g
E2EE
g
g
g
E2EE
g
a
á
â
ã
Ðèñ. 34. Ðàñ ïðå äå ëå íèå ýëåê ò ðî íîâ ïî ýíåð ãè ÿì íå ïî ñðåä ñò âåí íî
ïî ñëå íå óï ðó ãèõ ýëåê ò ðîí íî-äû ðî÷ íûõ ñòîë ê íî âå íèé â ïðè áëè æå -
íèè óç êîé âà ëåí ò íîé çîíû. Ñïëîø íûå ëè íèè ñî îò âåò ñò âó þò
s ® ¥
,
ïóí ê òèð
s = 2
. Ýíåð ãèè âîç áóæ äà þ ùèõ ôî òî íîâ:
h E
g
n = 15,
(à),
2,5 (á), 3,5 (â) è 5 (ã).
   g                                   g

                        a                      á




    Eg                       2Eg      E Eg           2Eg    E
   g                                   g


                        â                      ã




   Eg                       2Eg      E Eg            2E g   E
Ðèñ. 34. Ðàñïðåäåëåíèå ýëåêòðîíîâ ïî ýíåðãèÿì íåïîñðåäñòâåííî
ïîñëå íåóïðóãèõ ýëåêòðîííî-äûðî÷íûõ ñòîëêíîâåíèé â ïðèáëèæå-
íèè óçêîé âàëåíòíîé çîíû. Ñïëîøíûå ëèíèè ñîîòâåòñòâóþò s ® ¥,
ïóíêòèð — s = 2. Ýíåðãèè âîçáóæäàþùèõ ôîòîíîâ: hn Eg = 15
                                                        , (à),
2,5 (á), 3,5 (â) è 5 (ã).

ðàñïðåäåëåíèÿ ñòàíîâèòñÿ ãëàäêîé ñ ñóùåñòâåííûì âîçðàñòà-
íèåì äîëè íèçêîýíåðãåòè÷åñêèõ ýëåêòðîíîâ (ðèñ. 34ã).
    Óðàâíåíèå äëÿ ôóíêöèè ðàñïðåäåëåíèÿ â ýòèõ óïðîùåí-
íûõ ïðèáëèæåíèÿõ ìîæåò áûòü ðåøåíî àíàëèòè÷åñêè. Çäåñü
ìû ïðèâåäåì ðåøåíèå òîëüêî äëÿ áåñôîíîííîãî ñëó÷àÿ
(11.13). Ââåäåì áåçðàçìåðíóþ ýíåðãèþ x = E E g . Êâàíòîâûé
âûõîä ïðè ýòîì ïîä÷èíÿåòñÿ óðàâíåíèþ
                   x -1
              2
   h(x) =           ò h(x¢ ) dx¢ ,    x ³2 ,
            x -2    1

ãäå x¢ — áåçðàçìåðíàÿ ýíåðãèÿ âòîðè÷íûõ âîçáóæäåíèé. Ïðî-
èçâîäÿ ïðåîáðàçîâàíèå Ëàïëàñà
            ¥
    y(t) = ò h(x) e -(x - 1)t dx,
            1


                                     157