Основы многоскоростной обработки сигналов. Витязев В.В - 79 стр.

UptoLike

Составители: 

Рубрика: 

полосе пропускания. Увеличивается задержка сигнала из-за увеличе-
ния как порядка основного фильтра, так и непосредственно числа
фильтров-дециматоров и фильтров-интерполяторов, каждый из кото-
рых задерживает сигнал на половину длительности его импульсной
характеристики. Поэтому увеличение числа ступеней целесообраз-m
но только в том случае, если оно дает заметный выигрыш с позиции
принятого критерия качества.
Если число ступеней задано, то поиск оптимального значения m
параметров
m
ν
ν
ν
..., , ,
21
, минимизирующих целевую функцию (2.56)
или (2.57) в зависимости от принятого критерия качества, выполняется
с помощью методов машинной оптимизации [16]. В частности, решая
задачу оптимального синтеза многоступенчатой структуры фильтра-
дециматора (интерполятора) с помощью процедуры Хука и Дживса
[19], не требующей вычисления производных, Крошье и Рабинер полу-
чили набор расчетных кривых, устанавливающих зависимости мини-
мизируемых целевых функций от «идеальных» значений коэффициен-
тов прореживания
m1,j , =
j
ν
[16]. Проведенные расчеты позволили
сделать следующие выводы.
1. При оптимизированных вычислениях наибольший «прирост» вы-
игрыша по эффективности достигается в двухступенчатой структуре
( m =1) и чуть меньший - при переходе от двухступенчатой к трех- и
четырехступенчатой структурам (для достаточно больших значений
коэффициента прореживания
ν
).
2. При оптимизированной емкости памяти данных значительная ее
экономия (более ощутимая по сравнению с экономией вычислений)
может быть достигнута при переходе от двухступенчатой к трех- или
четырехступенчатым структурам, хотя наибольшее снижение емкости
памяти достигается при переходе от одно- к двухступенчатой структу-
ре.
3. В конструкциях с оптимизированной емкостью памяти данных
число вычислений незначительно увеличивается по отношению к чис-
лу вычислений, требуемых в конструкциях с оптимизированным чис-
лом вычислений. Следовательно, конструкция, которая минимизирует
объем требуемой памяти данных, минимизирует также и число тре-
буемых вычислений. Этот результат является следствием того факта,
что целевая функция, описывающая вычислительные затраты , име-
T
R
ет широкий, а функция, описывающая затраты памяти , несколько
S
более узкий минимумы.
79