Надежность функционирования систем электроснабжения. Волков Н.Г. - 28 стр.

UptoLike

Составители: 

28
x
ятности непрерывной случайной величины Х. Иногда функцию f(x)
называют также «
дифференциальной функцией распределения» или
«
дифференциальным законом распределения» величины Х.
Кривая, изображающая плотность распределения случайной вели-
чины, называется
кривой распределения (рис. 1.7).
Плотность распределения, так же как и функция распределения,
есть одна из форм закона распределения. Но в отличие от функции рас-
пределения эта форма не является универсальной: она существует толь-
ко для непрерывных случайных величин.
Рассмотрим непрерывную случайную величину Х с плотностью
распределения f(x) и элементарный участок dх
, примыкающий к точке х
(рис. 1.8).
Рис. 1.8. Непрерывная случайная
величина с плотностью
р
асп
р
еделения
f
(
x
)
на
у
частке dx
х
0
х
Рис. 1.9. Вероятность попадания
случайной величины
на отрезок от α до β
f (х)
0
f (х)
х dx
α β
f (х)
Рис. 1.7. Кривая распределения
f(x)
0