Лекции по теории вероятностей и математической статистике. Володин И.Н. - 223 стр.

UptoLike

Составители: 

Рубрика: 

ξ =
X
n
1
Y
k
/
n N(0, 1)
X
n
1
(Y
k
Y )
2
χ
2
n1
,
n 1,
1
ν
χ
2
ν
ν = n 1.
T
ν
,
ν
t
ξ η = χ
2
ν
f(x, y) =
1
2π
exp
½
x
2
2
¾
1
2
ν/2
Γ(ν/2)
y
ν/21
exp
n
y
2
o
,
T
ν
S
ν
(t) = P(ξ
p
ν < t) =
Z
x
ν<
Z
yt
f(x, y) dx dy =
Z
0
dy
t
y
Z
−∞
f(x, y) dx.
t,
s
ν
(t) =
Z
0
p
yf(t
p
y, y) dy =
1
πν2
(ν+1)/2
Γ(ν/2)
Z
0
y
ν+1
2
1
exp
½
y
2
µ
1 +
t
2
ν
¶¾
dt =
=
1
πν
Γ
¡
ν+1
2
¢
Γ
¡
ν
2
¢
µ
1 +
t
2
ν
ν+1
2
.
a = 0, b = 1
C(a, b),
ν = 1.
S
ν
(t) = 1 S
ν
(t),
µ
S
n1
(·) :
P (|T
n1
| t) = S
n1
(t) S
n1
(t) = 2S
n1
(t) 1 = 1 α,
     Xn       √                            Xn
ξ =       Yk / n ∼ N (0, 1) íå çàâèñèò îò     (Yk − Y )2 ∼ χ2n−1 , ðàçäåëèâ
        1                                   1
êîòîðóþ íà çíà÷åíèå ñòåïåíè ñâîáîäû n − 1, ïîëó÷àåì ν1 χ2ν ñ ν = n − 1.
   Íàéäåì ðàñïðåäåëåíèå ñëó÷àéíîé âåëè÷èíû Tν , êîòîðîå íàçûâàåòñÿ ðàñ-
ïðåäåëåíèåì Ñòüþäåíòà ñ ν ñòåïåíÿìè ñâîáîäû èëè
t-ðàñïðåäåëåíèåì. Ñîâìåñòíàÿ ôóíêöèÿ ïëîòíîñòè íåçàâèñèìûõ ñëó÷àéíûõ
âåëè÷èí ξ è η = χ2ν ðàâíà
                             ½ 2¾                         n yo
                      1         x         1      ν/2−1
          f (x, y) = √ exp −                   y       exp −     ,
                      2π         2 2ν/2 Γ(ν/2)               2
òàê ÷òî ôóíêöèÿ ðàñïðåäåëåíèÿ ñëó÷àéíîé âåëè÷èíû Tν
                                         p
                              Sν (t) = P (ξ
                                          ν/η < t) =
                                                √
                                               t y/ν
                    Z   Z                 Z∞    Z
                          f (x, y) dx dy = dy       f (x, y) dx.
                   √  √
                  x ν< yt                                0    −∞

Äèôôåðåíöèðóÿ ýòî âûðàæåíèå ïî t, íàõîäèì ôóíêöèþ ïëîòíîñòè ðàñïðå-
äåëåíèÿ Ñòüþäåíòà
                                    Z∞ p            p
                         sν (t) =            y/νf (t y/ν, y) dy =
                                    0

                                        Z∞                  ½    µ       ¶¾
                        1                        ν+1           y      t2
             √                               y    2 −1   exp −     1+       dt =
                 πν2(ν+1)/2 Γ(ν/2)                             2      ν
                                        0
                                   ¡ ν+1 ¢ µ     ¶ ν+1
                                 Γ              2 − 2
                              1                t
                            =√      ¡ ν2 ¢ 1 +         .
                               πν Γ 2          ν
   Âèä ïîëó÷åííîé ôóíêöèè ïëîòíîñòè ãîâîðèò î òîì, ÷òî ðàñïðåäåëåíèå
Ñòüþäåíòà ìîæíî òðàêòîâàòü êàê îáîáùåíèå ñòàíäàðòíîãî (a = 0, b = 1)
ðàñïðåäåëåíèÿ Êîøè C(a, b), êîòîðîå ïîëó÷àåòñÿ èç ðàñïðåäåëåíèÿ Ñòüþ-
äåíòà ïðè ÷èñëå ñòåïåíåé ñâîáîäû ν = 1. Ýòî ñèììåòðè÷íîå ðàñïðåäåëåíèå,
è ïîýòîìó Sν (−t) = 1 − Sν (t), ÷òî ïîçâîëÿåò íàì äîâîëüíî ïðîñòî ïîñòðî-
èòü äîâåðèòåëüíûé èíòåðâàë äëÿ µ ñ ïîìîùüþ êâàíòèëè ðàñïðåäåëåíèÿ
Sn−1 (·) :

         P (| Tn−1 | ≤ t) = Sn−1 (t) − Sn−1 (−t) = 2Sn−1 (t) − 1 = 1 − α,

                                                   223