Лекции по теории вероятностей и математической статистике. Володин И.Н. - 41 стр.

UptoLike

Составители: 

Рубрика: 

-
x
6
F (x)
x < 1 (−∞, x)
X,
F (x) = P (X < x ) = 0 . F (1) = P (X < 1) = 0,
1 < x +1, F (x) = P (X = 1) = 1/2. x > +1
X,
F (x) = 1 x > +1.
F.
F (x), x R
(F 1) lim
x→−∞
F (x) = 0, lim
x+
F (x) = 1.
(F 2) F (x) x R.
(F 3) F (x) lim
xa
F (x) = F (a).
(F 4) X
R
P {X [ a, b)} = F (b) F(a), P {X [ a, b ]} = F (b+) F (a),
P {X (a, b ]} = F (b+) F (a+), P {X (a, b)} = F (b) F (a+).
(F 5) F (x)
(F 1). {A
n
= ( −∞, x
n
), n
1}. x
n
& −∞ n , A
n
,
                               F (x)
                                        6
                                                    
                                        1


                           
                                        0.5


                                                                           -
                          -1            0           1                      x


   Äåéñòâèòåëüíî, äëÿ ëþáîãî x < −1 ìíîæåñòâî (−∞, x) íå ñîäåðæèò
çíà÷åíèé X, êîòîðûå îíà ìîãëà áû ïðèíÿòü ñ ïîëîæèòåëüíîé âåðîÿòíî-
ñòüþ, òàê ÷òî F (x) = P (X < x) = 0. Äàëåå, F (−1) = P (X < −1) = 0,
íî åñëè −1 < x ≤ +1, òî F (x) = P (X = −1) = 1/2. Â îáëàñòè x > +1
ñîäåðæàòñÿ âñå çíà÷åíèÿ ñëó÷àéíîé âåëè÷èíû X, êîòîðûå îíà ïðèíèìàåò
ñ ïîëîæèòåëüíîé âåðîÿòíîñòüþ, ïîýòîìó F (x) = 1 ïðè x > +1.
  Èññëåäóåì íåêîòîðûå îñîáåííîñòè ïîâåäåíèÿ ôóíêöèè F.
  Ïðåäëîæåíèå 4.1. Ôóíêöèÿ F (x), x ∈ R îáëàäàåò ñëåäóþùèìè ñâîé-
ñòâàìè.
  (F 1)   lim F (x) = 0, lim F (x) = 1.
          x→−∞            x→+∞

  (F 2) F (x)  íåóáûâàþùàÿ ôóíêöèÿ x ∈ R.
  (F 3) Ôóíêöèÿ F (x) íåïðåðûâíà ñëåâà: lim F (x) = F (a).
                                                  x→a−

   (F 4) Âåðîÿòíîñòè ïîïàäàíèÿ çíà÷åíèé ñëó÷àéíîé âåëè÷èíû X â èí-
òåðâàëû íà R âû÷èñëÿþòñÿ ïî ôîðìóëàì

     P {X ∈ [ a, b)} = F (b) − F (a),       P {X ∈ [ a, b ]} = F (b+) − F (a),

   P {X ∈ (a, b ]} = F (b+) − F (a+),         P {X ∈ (a, b)} = F (b) − F (a+).


  (F 5) Ôóíêöèÿ F (x) èìååò íå áîëåå ÷åì ñ÷åòíîå ìíîæåñòâî ñêà÷êîâ.
   Ä î ê à ç à ò å ë ü ñ ò â î. (F 1). Ðàññìîòðèì ñîáûòèÿ {An = (−∞, xn ), n ≥
1}. Åñëè xn & −∞ ïðè n → ∞, òî, î÷åâèäíî, An ↓ ∅, è, àíàëîãè÷íî,


                                        41