Основы проектирования и конструирования машин. Воячек А.И - 30 стр.

UptoLike

Составители: 

Доказательство: пусть сила F приложена к телу в точке А (рису-
нок 2.18). Приложим в центре О две равные и противоположно
направленные силы
F
и
F
. Согласно II аксиоме при этом механи-
ческое состояние тела не изменится. Пусть модули всех сил равны:
F =
F
=
F
′′
. Тогда полученную систему из трех сил можно пред-
ставить как пару (F,
F
) и силу
F
, которую можно рассматривать
как перенесенную из точки А в точку О силу F. Нетрудно убедиться,
что момент пары (F,
F
)
М = Fa = М
o
(F).
Рисунок 2.18 – Параллельный перенос силы
В частном случае, если центр приведения выбрать на линии дей-
ствия силы F, то момент присоединенной пары будет равен нулю.
Значит, присоединять пару необходимо только при параллельном
переносе силы.
Рассмотрим теперь произвольную плоскую систему из n числа сил
(F
1
, F
2
, F
3
, ..., F
n
) (рисунок 2.19). Выберем на плоскости произ-
вольную точку О и перенесем в нее все силы системы. В результате
приведения получим пучок приложенных в точке О сил (
1
F
,
2
F
, ...,
n
F
) и систему присоединенных пар (F
1
); …
2
F
29
   Доказательство: пусть сила F приложена к телу в точке А (рису-
нок 2.18). Приложим в центре О две равные и противоположно
направленные силы F ′ и F ′′ . Согласно II аксиоме при этом механи-
ческое состояние тела не изменится. Пусть модули всех сил равны:
F = F ′ = F ′′ . Тогда полученную систему из трех сил можно пред-
ставить как пару (F, F ′′ ) и силу F ′ , которую можно рассматривать
как перенесенную из точки А в точку О силу F. Нетрудно убедиться,
что момент пары (F, F ′′ )
                             М = Fa = Мo(F).




                Рисунок 2.18 – Параллельный перенос силы

     В частном случае, если центр приведения выбрать на линии дей-
ствия силы F, то момент присоединенной пары будет равен нулю.
Значит, присоединять пару необходимо только при параллельном
переносе силы.
     Рассмотрим теперь произвольную плоскую систему из n числа сил
(F1, F2, F3, ..., Fn) (рисунок 2.19). Выберем на плоскости произ-
вольную точку О и перенесем в нее все силы системы. В результате
приведения получим пучок приложенных в точке О сил ( F1′ , F2′ , ...,
 Fn′ ) и систему присоединенных пар (F1 F2′ ); …




                                  29