Краткий курс теоретической механики. Яковенко Г.Н. - 77 стр.

UptoLike

Составители: 

Рубрика: 

e = 0 p
0 < e < 1 ϕ
e = 1 ϕ + β = π
e > 1 ϕ + β = ±arccos(1/e)
ϕ + β = ±arccos(1/e)
p e
c = r
2
˙ϕ
E
=
1
m
E =
1
m
(T + Π) =
1
2
µ
˙r
2
+
c
2
r
2
µ
r
=
1
2
µ
˙r
2
0
+
c
2
r
2
0
µ
r
0
= const (21.8)
A r
0
˙r
0
ϕ
0
˙ϕ
0
u
0
=
1
r
0
=
µ
c
2
+ A cos(ϕ
0
+ β), u
0
0
=
1
c
˙r
0
= A sin(ϕ
0
+ β),
A
2
=
µ
1
r
0
µ
c
2
2
+
1
c
2
˙r
2
0
=
1
r
2
0
2
µ
r
0
c
2
+
µ
2
c
4
+
1
c
2
˙r
2
0
=
=
1
c
2
µ
˙r
2
0
+
c
2
r
2
0
2
µ
r
0
+
µ
2
c
2
=
µ
2
c
4
µ
2E
c
2
µ
2
+ 1
,
A =
µ
c
2
s
1 +
2E
c
2
µ
2
.
p =
c
2
µ
, e =
Ac
2
µ
=
s
1 +
2E
c
2
µ
2
. (21.9)
T
¤ T
πab a = p/(1
e
2
) b = p/
1 e
2
1. e = 0, îêðóæíîñòü ðàäèóñà p;
2. 0 < e < 1, çíàìåíàòåëü â (21.6) íè ïðè êàêîì çíà÷åíèè ϕ íå îáðàùàåòñÿ â
íóëü, ôèíèòíàÿ òðàåêòîðèÿ  ýëëèïñ;
3. e = 1, çíàìåíàòåëü â (21.6) îáðàùàåòñÿ â íóëü ïðè ϕ + β = π  ïàðàáîëà;
4. e > 1, çíàìåíàòåëü â (21.6) îáðàùàåòñÿ â íóëü ïðè ϕ + β = ±arccos(1/e) 
ãèïåðáîëà ñ àñèìïòîòàìè, ñîîòâåòñòâóþùèìè óãëàì ϕ + β = ±arccos(1/e).
Ïóíêò 2 îáîñíîâûâàåò
Ïåðâûé çàêîí Êåïëåðà. Ïëàíåòû äâèæóòñÿ ïî ýëëèïñàì, â ôîêóñàõ êîòîðûõ
íàõîäèòñÿ Ñîëíöå.
Âûðàçèì ôîêàëüíûé ïàðàìåòð p è ýêñöåíòðèñèòåò e ÷åðåç ïðèâåä¼ííûé ìîìåíò
èìïóëüñà c = r2 ϕ̇ (ñì. (20.2)) è ïðèâåä¼ííóþ ïîëíóþ ýíåðãèþ
                               µ            ¶           µ                ¶
   ∗1   1          1               2   c2        µ  1               c2           µ
 E = E = (T + Π) =                 ṙ + 2       − =         ṙ02   + 2       −      = const (21.8)
    m   m          2                   r         r  2               r0           r0

(â ðàâåíñòâå (21.2) ó÷òåíà ïîòåíöèàëüíàÿ ýíåðãèÿ (21.3)). Îïðåäåëèì â (21.5)
ïîñòîÿííóþ A ÷åðåç íà÷àëüíûå óñëîâèÿ r0 , ṙ0 , ϕ0 , ϕ̇0 (â ïðåîáðàçîâàíèÿõ èñ-
ïîëüçîâàíû ôîðìóëû (20.6), (20.7), (21.8)):

                 1     µ                               1
         u0 =      = 2 + A cos(ϕ0 + β),      u00 = − ṙ0 = −A sin(ϕ0 + β),
                r0    c                                 c
                     µ         ¶2
                         1   µ      1       1         µ    µ2  1
                A2 =       − 2 + 2 ṙ02 = 2 − 2 2 + 4 + 2 ṙ02 =
                         r0 c       c       r0      r0 c   c   c
                         µ                   ¶         µ         ¶
                     1     2   c2    µ   µ2       µ2 2E ∗ c2
                   = 2 ṙ0 + 2 − 2 + 2 = 4                    +1 ,
                     c        r0    r0    c        c      µ2
                                        s
                                      µ        2E ∗ c2
                                  A= 2 1+              .
                                      c          µ2

Ïîäñòàíîâêà ïîëó÷åííîãî ðåçóëüòàòà â (21.7) ïðèâîäèò ê èñêîìûì âûðàæåíèÿì
                                                  s
                           c2          Ac2              2E ∗ c2
                         p= ,       e=     =       1+           .                           (21.9)
                           µ            µ                µ2

Äîêàæåì
Òðåòèé çàêîí Êåïëåðà. Îòíîøåíèå êâàäðàòà âðåìåíè T îáðàùåíèÿ ïëàíåòû
ê êóáó áîëüøîé ïîëóîñè òðàåêòîðèè îäèíàêîâî äëÿ âñåõ ïëàíåò îäíîé è òîé æå
Ñîëíå÷íîé ñèñòåìû.
¤ Ïî âòîðîìó çàêîíó Êåïëåðà (ïîñòîÿíñòâî ñåêòîðèàëüíîé ñêîðîñòè) âðåìÿ T
îáðàùåíèÿ ðàâíî îòíîøåíèþ ïëîùàäè
                             √       ýëëèïòè÷åñêîé îðáèòû (πab, a = p/(1 −
 2
e )  áîëüøàÿ ïîëóîñü, b = p/ 1 − e  ìàëàÿ [3, ãë. III, Ÿ 2; ãë. IV, Ÿ 3]) ê
                                   2



                                            77