Приближенные методы решения вариационных неравенств теории мягких сетчатых оболочек. Задворнов О.А. - 11 стр.

UptoLike

Составители: 

ku
(k)
+ t(u
(k+1)
u
(k)
)k
V
ku
(k)
k
V
kt(u
(k+1)
u
(k)
)k
V
ku
(k+1)
u
(k)
k
V
Ψ
1
³
kAu
(k)
fk
V
´
.
d
ku
(k)
k
V
+ Ψ
1
³
kAu
(k)
fk
V
´
d
0
+ Ψ
1
(d
1
) .
µ µ(d
) µ
0
|hA(u
(k)
+ t(u
(k+1)
u
(k)
)) Au
(k)
, u
(k+1)
u
(k)
i|
µ
0
Ψ(ku
(k+1)
u
(k)
k
V
)ku
(k+1)
u
(k)
k
V
.
F (u
(k+1)
) F (u
(k)
) =
1
Z
0
hA(u
(k)
+ t(u
(k+1)
u
(k)
)), u
(k+1)
u
(k)
idt
−hf, u
(k+1)
u
(k)
i =
=
1
Z
0
hA(u
(k+1)
+ t(u
(k)
u
(k+1)
)) Au
(k)
, u
(k+1)
u
(k)
idt+
+hf Au
(k)
, u
(k)
u
(k+1)
i.
v = u
(k)
F (u
(k+1)
) F (u
(k)
)
1
Z
0
|hA(u
(k+1)
+ t(u
(k)
u
(k+1)
)) Au
(k)
, u
(k+1)
u
(k)
i|dt
1
τ
hJ(u
(k+1)
u
(k)
), u
(k+1)
u
(k)
i
   Ñ äðóãîé ñòîðîíû, â ñèëó (1.15)

        ku(k) + t(u(k+1) − u(k) )kV − ku(k) kV ≤ kt(u(k+1) − u(k) )kV ≤
                                             ³              ´
                     (k+1)     (k)       −1       (k)
                ≤ ku       − u kV ≤ Ψ          kAu − f kV ∗ .

Ïîýòîìó, ïîëüçóÿñü (1.13), ïîëó÷àåì
                                             ³            ´
                ∗         (k)           −1
            d ≤ ku kV + Ψ                     kAu − f kV ∗ ≤ d0 + Ψ−1 (d1 ) .
                                                 (k)



   Ïîñêîëüêó µ  íå óáûâàþùàÿ ôóíêöèÿ, òî µ(d∗ ) ≤ µ0 , ñëåäîâàòåëüíî,
èç (1.16) âûòåêàåò, ÷òî

                |hA(u(k) + t(u(k+1) − u(k) )) − Au(k) , u(k+1) − u(k) i| ≤

                         ≤ µ0 Ψ(ku(k+1) − u(k) kV )ku(k+1) − u(k) kV .                (1.17)

   Äàëåå, èç (1.9) èìååì
                                    Z1
   F (u(k+1) ) − F (u(k) ) =             hA(u(k) + t(u(k+1) − u(k) )), u(k+1) − u(k) idt−
                                    0

                                        −hf, u(k+1) − u(k) i =
            Z1
        =           hA(u(k+1) + t(u(k) − u(k+1) )) − Au(k) , u(k+1) − u(k) idt+
                0

                                  +hf − Au(k) , u(k) − u(k+1) i.

Îòñþäà, ïîëüçóÿñü (1.10) ñ v = u(k) è (1.17), ñ ó÷åòîì (1.11) ïîëó÷àåì

                                     F (u(k+1) ) − F (u(k) ) ≤
           Z1
       ≤            |hA(u(k+1) + t(u(k) − u(k+1) )) − Au(k) , u(k+1) − u(k) i|dt−
            0

                                1
                           −      hJ(u(k+1) − u(k) ), u(k+1) − u(k) i ≤
                                τ
                                                  11