ВУЗ:
Составители:
w
∼
M
β
β(α) =
|D(w(α))|
|[∂
1
w(α), ∂
2
w(α)] |
, α ∈
¯
Ω.
w β
D(w(α)) = −|D(w(α)) | N(w(α)) , α ∈ I(w).
α
∗
∈ I(w)
g = (g
1
, g
2
, g
3
)
g =
D(w
∗
)/|D(w
∗
) | + N(w
∗
)
|D(w
∗
)/|D(w
∗
) | + N(w
∗
) |
, w
∗
= w(α
∗
).
(g, D(w
∗
)/|D(w
∗
)|) > 0 , (g, N(w
∗
)) > 0.
a b
a 6= −b (a, b) > −1 c = (a + b)/|a + b|
(a, c) > 0 (b, c) > 0
(a, c) =
(a, a + b)
|a + b|
=
1 + (a, b)
|a + b|
= (b, c) > 0.
δ, ε
0
> 0
(g, D(w(α))) > δ, α ∈ B
ε
0
(α
∗
),
(g, N(w(α))) |ν(w(α)) | > δ , α ∈ B
ε
0
(α
∗
),
B
ε
(α) = {τ ∈ R
2
: |τ − α | ≤ ε}
∼ Îáðàòíî, ïóñòü ôóíêöèÿ w èç M óäîâëåòâîðÿåò âàðèàöèîííîìó óñëî- âèþ (3.21). Îïðåäåëèì ôóíêöèþ β ñîîòíîøåíèåì |D(w(α))| β(α) = , α ∈ Ω̄. (3.22) | [∂1 w(α), ∂2 w(α)] | Äîêàæåì, ÷òî ïðè ýòîì äëÿ ôóíêöèé w è β âûïîëíåíû óðàâíåíèå (3.15) è óñëîâèÿ (3.13), (3.14). Ïðîâåðèì ñíà÷àëà, ÷òî D(w(α)) = −| D(w(α)) | N (w(α)) , α ∈ I(w). (3.23) Äîïóñòèì, ÷òî íàøëàñü òî÷êà α∗ ∈ I(w), â êîòîðîé íå âûïîëíåíî óñëîâèå (3.23). Îïðåäåëèì âåêòîð g = (g1 , g2 , g3 ) ðàâåíñòâîì: D(w∗ )/| D(w∗ ) | + N (w∗ ) g= ∗ ∗ ∗ , ãäå w∗ = w(α∗ ). | D(w )/| D(w ) | + N (w ) | Ïðîâåðèì, ÷òî ýòîò åäèíè÷íûé âåêòîð óäîâëåòâîðÿåò óñëîâèÿì (g, D(w∗ )/|D(w∗ )|) > 0 , (g, N (w∗ )) > 0. (3.24) Äåéñòâèòåëüíî, äëÿ ëþáûõ äâóõ åäèíè÷íûõ âåêòîðîâ a, b, òàêèõ, ÷òî 6 −b, âåðíî íåðàâåíñòâî (a, b) > −1, è, åñëè c = (a + b)/|a + b|, òî a = (a, c) > 0, (b, c) > 0, ïîñêîëüêó (a, a + b) 1 + (a, b) (a, c) = = = (b, c) > 0. |a + b| |a + b| Ëåâûå ÷àñòè íåðàâåíñòâ (3.24) ïî ïðåäïîëîæåíèþ, ñäåëàííîìó âûøå, íåïðåðûâíû, à çíà÷èò, íàéäóòñÿ òàêèå δ, ε0 > 0, ÷òî (g, D(w(α))) > δ, α ∈ Bε0 (α∗ ), (3.25) (g, N (w(α))) | ν(w(α)) | > δ , α ∈ Bε0 (α∗ ), (3.26) ãäå Bε (α) = {τ ∈ R2 : | τ − α | ≤ ε}. 25
Страницы
- « первая
- ‹ предыдущая
- …
- 23
- 24
- 25
- 26
- 27
- …
- следующая ›
- последняя »