ВУЗ:
Составители:
Рубрика:
f(t)
g(λ) =
Z
∞
−∞
f(t)e
−iλt
dt
f(t) =
1
2π
Z
∞
−∞
g(λ)e
iλt
dλ
ˆ
F (f
0
(t) = iλ
ˆ
F f(t))
R(x)
y(x) = R(x) ∗ f(t) =
Z
R(t − x)f(t)dt
ˆ
F y =
ˆ
F R ·
ˆ
F f
y(x) R(x) f(t)
f(t) =
ˆ
F
−1
(
ˆ
F R ·
ˆ
F y)
s(k), k = 0, ..., m
s(v), v = 0, ..., m s(k), k = 0, ..., m
s(v) =
1
m + 1
m
X
k=0
s(k)e
−qkv
, v = 0, ..., m
s(k) =
m
X
v=0
s(v)e
qkv
, k = 0, ..., m;
q =
2πi
m+1
• s(v + m − 1) = s(v)
∗
m s(m/2 + 1) = 0
•
ˆ
F (s(k + 1) − s(k)) = (e
qkv
− 1)
ˆ
F s(k) s(0) = s(m) = 0
• s(k) = 1, k = 0, ..., m;
s(v) =
1
m + 1
m
X
k=0
e
−qkv
= 1 + e
−qv
+ e
−q2v
+ ... + e
−qmv
,
s(v) =
(
1 v = 0
1
m+1
1−e
−qv(m+1)
1−e
−qv
= 0
ËÅÊÖÈß 10. ÔÈËÜÒÐÀÖÈß. Ðàññìîòðèì ïðåäâàðèòåëüíî âàæíîå äëÿ çàäà÷ ôèëüòðàöèè ÄÈÑÊÐÅÒÍÎÅ ÏÐÅÎÁÐÀÇÎÂÀÍÈÅ ÔÓÐÜÅ (DFT). Ïóñòü çàäàííàÿ ôóíêöèÿ f (t) íåïðåðûâíà è àáñîëþòíî èíòåãðèðóåìà â îáëàñòè îïðåäåëåíèÿ. Òîãäà ìîæíî çàïèñàòü ïðåîáðàçîâàíèå Ôóðüå, ïðÿìîå: Z ∞ g(λ) = f (t)e−iλt dt −∞ è îáðàòíîå: 1 Z∞ f (t) = g(λ)eiλt dλ 2π −∞ Îòìåòèì ñëåäóþùåå ñâîéñòâî ýòèõ îïåðàöèé F̂ (f 0 (t) = iλF̂ f (t)). Äàëåå äëÿ èíòåãðèðóåìîé ôóíêöèè R(x) ìîæåò áûòü îïðåäåëåíà îïåðàöèÿ êîíâîëþöèè (èíà÷å ñâåðòêè) Z y(x) = R(x) ∗ f (t) = R(t − x)f (t)dt  ýòîì ñëó÷àå ñïðàâåäëèâî F̂ y = F̂ R · F̂ f è åñëè èçâåñòíû y(x) è R(x), òî f (t) ìîæíî îïðåäåëèòü ôîðìóëîé f (t) = F̂ −1 (F̂ R · F̂ y) Ïðåîáðàçîâàíèå Ôóðüå èãðàåò â ìàòåìàòèêå îãðîìíóþ ðîëü, íî äëÿ ïðàêòè÷åñêèõ ïðèëîæåíèé ÷àñòî íàèáîëåå ïîäõîäÿùèìè îêàçûâàþòñÿ äèñêðåòíûå àíàëîãè ýòèõ îïåðàöèé. Ïóñòü çàäàíà ãèñòîãðàììà s(k), k = 0, ..., m; òîãäà ïðÿìîå äèñêðåòíîå ïðåîáðàçîâàíèå Ôóðüå s(v), v = 0, ..., m è îáðàòíîå s(k), k = 0, ..., m îïðåäåëÿþòñÿ ñëåäóþùèì îáðàçîì: m 1 X s(v) = s(k)e−qkv , v = 0, ..., m (10) m + 1 k=0 m X s(k) = s(v)eqkv , k = 0, ..., m; (11) v=0 2πi ãäå q = m+1 Ñâîéñòâà • s(v + m − 1) = s(v)∗ Îòñþäà: åñëè m ÷åòíîå, s(m/2 + 1) = 0 • F̂ (s(k + 1) − s(k)) = (eqkv − 1)F̂ s(k) åñëè s(0) = s(m) = 0 Ïðèìåðû. • s(k) = 1, k = 0, ..., m; m 1 X s(v) = e−qkv = 1 + e−qv + e−q2v + ... + e−qmv , îòêóäà m + 1 k=0 ( 1 åñëè v = 0; s(v) = 1 1−e−qv(m+1) m+1 1−e−qv = 0 èíà÷å 35
Страницы
- « первая
- ‹ предыдущая
- …
- 33
- 34
- 35
- 36
- 37
- …
- следующая ›
- последняя »