Математическая обработка экспериментальных данных нейтронного рассеяния в физике низких энергий. Злоказов В.Б. - 35 стр.

UptoLike

Составители: 

f(t)
g(λ) =
Z
−∞
f(t)e
iλt
dt
f(t) =
1
2π
Z
−∞
g(λ)e
iλt
ˆ
F (f
0
(t) =
ˆ
F f(t))
R(x)
y(x) = R(x) f(t) =
Z
R(t x)f(t)dt
ˆ
F y =
ˆ
F R ·
ˆ
F f
y(x) R(x) f(t)
f(t) =
ˆ
F
1
(
ˆ
F R ·
ˆ
F y)
s(k), k = 0, ..., m
s(v), v = 0, ..., m s(k), k = 0, ..., m
s(v) =
1
m + 1
m
X
k=0
s(k)e
qkv
, v = 0, ..., m
s(k) =
m
X
v=0
s(v)e
qkv
, k = 0, ..., m;
q =
2πi
m+1
s(v + m 1) = s(v)
m s(m/2 + 1) = 0
ˆ
F (s(k + 1) s(k)) = (e
qkv
1)
ˆ
F s(k) s(0) = s(m) = 0
s(k) = 1, k = 0, ..., m;
s(v) =
1
m + 1
m
X
k=0
e
qkv
= 1 + e
qv
+ e
q2v
+ ... + e
qmv
,
s(v) =
(
1 v = 0
1
m+1
1e
qv(m+1)
1e
qv
= 0
                              ËÅÊÖÈß 10. ÔÈËÜÒÐÀÖÈß.
   Ðàññìîòðèì ïðåäâàðèòåëüíî âàæíîå äëÿ çàäà÷ ôèëüòðàöèè ÄÈÑÊÐÅÒÍÎÅ
ÏÐÅÎÁÐÀÇÎÂÀÍÈÅ ÔÓÐÜÅ (DFT). Ïóñòü çàäàííàÿ ôóíêöèÿ f (t) íåïðåðûâíà
è àáñîëþòíî èíòåãðèðóåìà â îáëàñòè îïðåäåëåíèÿ. Òîãäà ìîæíî çàïèñàòü
ïðåîáðàçîâàíèå Ôóðüå, ïðÿìîå:
                                                   Z ∞
                                       g(λ) =             f (t)e−iλt dt
                                                     −∞

è îáðàòíîå:
                                              1 Z∞
                                     f (t) =       g(λ)eiλt dλ
                                             2π −∞
Îòìåòèì ñëåäóþùåå ñâîéñòâî ýòèõ îïåðàöèé F̂ (f 0 (t) = iλF̂ f (t)).
Äàëåå äëÿ èíòåãðèðóåìîé ôóíêöèè R(x) ìîæåò áûòü îïðåäåëåíà îïåðàöèÿ
êîíâîëþöèè (èíà÷å ñâåðòêè)
                                                              Z
                             y(x) = R(x) ∗ f (t) =                R(t − x)f (t)dt

 ýòîì ñëó÷àå ñïðàâåäëèâî
                                               F̂ y = F̂ R · F̂ f
è åñëè èçâåñòíû y(x) è R(x), òî f (t) ìîæíî îïðåäåëèòü ôîðìóëîé
                                       f (t) = F̂ −1 (F̂ R · F̂ y)
Ïðåîáðàçîâàíèå Ôóðüå èãðàåò â ìàòåìàòèêå îãðîìíóþ ðîëü, íî äëÿ ïðàêòè÷åñêèõ
ïðèëîæåíèé ÷àñòî íàèáîëåå ïîäõîäÿùèìè îêàçûâàþòñÿ äèñêðåòíûå àíàëîãè ýòèõ
îïåðàöèé.
Ïóñòü çàäàíà ãèñòîãðàììà s(k), k = 0, ..., m; òîãäà ïðÿìîå äèñêðåòíîå ïðåîáðàçîâàíèå
Ôóðüå s(v), v = 0, ..., m è îáðàòíîå s(k), k = 0, ..., m îïðåäåëÿþòñÿ ñëåäóþùèì
îáðàçîì:
                                            m
                                       1 X
                            s(v) =             s(k)e−qkv ,             v = 0, ..., m            (10)
                                     m + 1 k=0
                                           m
                                           X
                               s(k) =            s(v)eqkv ,       k = 0, ..., m;                (11)
                                           v=0
          2πi
ãäå q =   m+1
                Ñâîéñòâà
   • s(v + m − 1) = s(v)∗ Îòñþäà: åñëè m ÷åòíîå, s(m/2 + 1) = 0
   • F̂ (s(k + 1) − s(k)) = (eqkv − 1)F̂ s(k) åñëè s(0) = s(m) = 0
Ïðèìåðû.

   • s(k) = 1, k = 0, ..., m;
                                 m
                            1 X
                 s(v) =             e−qkv = 1 + e−qv + e−q2v + ... + e−qmv ,           îòêóäà
                          m + 1 k=0
                                       (
                                           1                           åñëè v = 0;
                              s(v) =         1 1−e−qv(m+1)
                                            m+1  1−e−qv
                                                                   = 0 èíà÷å

                                                       35