Теория вероятностей и математическая статистика. Бадлуева А.А - 28 стр.

UptoLike

Рубрика: 

Вариант 5
Задание 1.
Найти методом произведений: а) выборочную среднюю;
б) выборочную дисперсию; в) выборочное среднее
квадратическое отклонение по данному статистическому
распределению выборки ( в первой строке указаны
выборочные варианты
i
x , а во второй соответственные
частоты
i
n
количественного признака Х).
i
x 110 115 120 125 130 135 140
i
n 5 10 30 25 15 10 5
Задание 2.
Найти доверительные интервалы для оценки
математического ожидания а нормального распределения
с надежностью 0,95 , зная выборочную среднюю
x
, объем
выборки n и среднее квадратическое отклонение
σ
.
x
=75,13,
σ
=10, n=100
Задание 3.
Найти выборочное уравнение прямой
)( xxryy
x
y
Bx
=
σ
σ
регрессии Y на X по данной
корреляционной таблице.
X
Y
5 10 15 20 25 30 n
y
10 3 5 - - - - 8
20 - 4 4 - - - 8
30 - - 7 35 8 - 50
40 - - 2 10 8 - 20
50 - - - 5 6 3 14
n
x
3 9 13 50 22 3 n=100
Задание 4. Проверить гипотезу о нормальном
распределении генеральной совокупности по результатам
выборки, представленной интервальным вариационным
рядом, при уровне значимости α=0,05.
X 0,02-1,16 1,16-2,30 2,30-3,44 3,44-4,58 4,58-5,72
n 4 16 24 10 6
                             Вариант 5


Задание 1.
  Найти методом произведений: а) выборочную среднюю;                    X     5       10        15     20      25        30       ny
б) выборочную дисперсию; в) выборочное среднее                 Y
квадратическое отклонение по данному статистическому               10         3       5          -      -       -        -        8
распределению выборки ( в первой строке указаны                    20         -       4          4      -       -        -        8
выборочные варианты x i , а во второй− соответственные             30         -       -         7      35       8        -       50
частоты ni количественного признака Х).                            40         -       -         2      10       8        -       20
                                                                   50         -       -          -     5       6         3       14
                                                                   nx         3       9         13     50      22        3      n=100
x i 110      115       120       125     130   135   140
ni 5           10      30        25      15    10     5

Задание 2.                                                     Задание    4.   Проверить    гипотезу о   нормальном
 Найти     доверительные  интервалы    для    оценки           распределении генеральной совокупности по результатам
математического ожидания а нормального распределения           выборки, представленной интервальным вариационным
                                                               рядом, при уровне значимости α=0,05.
с надежностью 0,95 , зная выборочную среднюю x , объем
выборки n и среднее квадратическое отклонение σ .
x =75,13, σ =10, n=100                                         X        0,02-1,16   1,16-2,30    2,30-3,44   3,44-4,58       4,58-5,72
                                                               n            4          16           24          10               6
Задание 3.
 Найти              выборочное         уравнение      прямой
               σy
y x − y = rB         ( x − x) регрессии Y на X по данной
               σx
корреляционной таблице.