ВУЗ:
Составители:
51
()
()
(
)
11
1
1
1
1
1
()
1
1
1
(1)
1
1
ln
1
max ( )
ln
1
exp
kk
p
r
k
r
ttt
kA
k
p
k
k
r
kA
k
n
Ct
kj
n
n
Ct
kj
n
+
+λ
−
≤≤
=−
+λ
−
+
=−
⎛⎞
+
ϕ
≤
⎜⎟
−+
⎝⎠
⎛⎞
≤−+
⎜⎟
⎜⎟
+
⎝⎠
∑
∑
()
(
)
()
()
1
1
1
(1)
1
1
0
1
1
1
ln
1
exp
ln
1
exp
p
j
k
k
r
k
k
p
k
r
kA
k
n
Ct
kj
n
n
Ck
kj
n
+λ
−
+
=
+λ
−
=−
⎛⎞
+−≤
⎜⎟
−+
⎝⎠
⎛⎞
≤−+
⎜⎟
⎜⎟
+
⎝⎠
∑
∑
()
()
()
1
1
1
1
0
1
ln
1
exp
ln
exp
p
j
k
r
k
k
k
r
pr
kA
k
r
n
Ck
kj
n
N
C
e
k
jk
N
e
+λ
−
=
−
+λ
=−
⎛⎞
+−≤
⎜⎟
−+
⎝⎠
⎛⎞
⎜⎟
⎜⎟
⎜⎟
⎝⎠
≤−+
−
⎛⎞
⎜⎟
⎜⎟
⎜⎟
⎝⎠
∑
∑
()
()
1
2
1
1
1
0
2
ln
exp ln ;
() ()
max ( ) ( ) .
j
j
k
j
r
r
pr
k
k
r
t
p
i
N
N
p
t
N
C
e
kCN N
jk
N
e
rdC
t
+
−
−
−
+λ
=
+λ
⎛⎞
⎜⎟
⎜⎟
⎝⎠
+−≤
⎛⎞−
⎜⎟
⎜⎟
⎝⎠
ϕτ −ϕ τ
=τ≤ϕτ−ϕτ
τ−
∑
∫
−1 p+λ
⎛ 1 ⎞ ln n1k
+ ∑ C⎜ ⎟ max ϕ ( r ) (t ) ≤
−k + j ⎠
( )
r 1
k = − A1 ⎝
1
n1k t k ≤ t ≤ t k +1
p+λ
)
−1
≤ ∑
⎛ 1 ⎞
C ⎜⎜ ⎟
k + j ⎟⎠
ln n1k
(
exp − t k(1)+1 +
( )
r
k = − A1 ⎝ n1k
j −1 p +λ
ln n1k
+ ∑
⎛ 1 ⎞
C⎜ ⎟ (
exp − t k(1)+1 ≤ )
−k + j ⎠
( )
r
k =0 ⎝ n1k
−1 p +λ
⎛ 1 ⎞ ln n1k
≤ ∑
C⎜
⎜ k + j ⎟⎟
exp ( − k ) +
( )
r
k =− A1 ⎝ ⎠ n1k
j −1 p +λ
⎛ 1 ⎞ ln n1k
+ C⎜∑ ⎟ exp ( −k ) ≤
−k + j ⎠
( )
r
k =0 ⎝ n1k
⎛ ⎞
N
ln ⎜⎜ ⎟
⎟
k
−1
C ⎜ ⎟
⎝e r ⎠ exp − k +
≤ ∑ p +λ r ( )
k =− A1 j−k
⎛ ⎞
⎜ N ⎟
⎜ k ⎟
⎜ r ⎟
⎝e ⎠
⎛ N ⎞
ln ⎜ k ⎟
j −1
C ⎜ r ⎟
⎝ e ⎠ exp − k ≤ CN − r ln N ;
+ ∑ p +λ r
( )
k =0 j − k ⎛ N ⎞
⎜ ⎟
⎜ kr ⎟
⎝e ⎠
t1j + 2
ϕ(τ) − ϕ N (τ) p
r2i = ∫ d τ ≤ C max ( ϕ(τ) − ϕ N (τ) ) .
p +λ
t1j −1
τ−t
51
Страницы
- « первая
- ‹ предыдущая
- …
- 48
- 49
- 50
- 51
- 52
- …
- следующая ›
- последняя »
