Приближенные методы вычисления интегралов Адамара. Бойков И.В - 50 стр.

UptoLike

51
()
()
(
)
11
1
1
1
1
1
()
1
1
1
(1)
1
1
ln
1
max ( )
ln
1
exp
kk
p
r
k
r
ttt
kA
k
p
k
k
r
kA
k
n
Ct
kj
n
n
Ct
kj
n
+
≤≤
=−
+
=−
⎛⎞
+
ϕ
⎜⎟
−+
⎝⎠
⎛⎞
≤−+
⎜⎟
⎜⎟
+
⎝⎠
()
(
)
()
()
1
1
1
(1)
1
1
0
1
1
1
ln
1
exp
ln
1
exp
p
j
k
k
r
k
k
p
k
r
kA
k
n
Ct
kj
n
n
Ck
kj
n
+
=
=−
⎛⎞
+−
⎜⎟
−+
⎝⎠
⎛⎞
≤−+
⎜⎟
⎜⎟
+
⎝⎠
()
()
()
1
1
1
1
0
1
ln
1
exp
ln
exp
p
j
k
r
k
k
k
r
pr
kA
k
r
n
Ck
kj
n
N
C
e
k
jk
N
e
=
=−
⎛⎞
+−
⎜⎟
−+
⎝⎠
⎛⎞
⎜⎟
⎜⎟
⎜⎟
⎝⎠
≤−+
⎛⎞
⎜⎟
⎜⎟
⎜⎟
⎝⎠
()
()
1
2
1
1
1
0
2
ln
exp ln ;
() ()
max ( ) ( ) .
j
j
k
j
r
r
pr
k
k
r
t
p
i
N
N
p
t
N
C
e
kCN N
jk
N
e
rdC
t
+
=
⎛⎞
⎜⎟
⎜⎟
⎝⎠
+−
⎛⎞
⎜⎟
⎜⎟
⎝⎠
ϕτ ϕ τ
ϕτϕτ
τ−
        −1                         p+λ
              ⎛ 1 ⎞                         ln n1k
 +      ∑    C⎜        ⎟                                      max         ϕ ( r ) (t ) ≤
                −k + j ⎠
                                          ( )
                                               r 1
     k = − A1 ⎝
                                                            1
                                            n1k t k ≤ t ≤ t k +1
                                   p+λ

                                                                              )
         −1
 ≤      ∑
              ⎛ 1 ⎞
           C ⎜⎜        ⎟
                k + j ⎟⎠
                                          ln n1k
                                                                  (
                                                      exp − t k(1)+1 +
                                          ( )
                                                r
   k = − A1 ⎝                               n1k
              j −1                   p +λ
                                              ln n1k
         +   ∑
                  ⎛ 1 ⎞
                 C⎜        ⎟                                          (
                                                          exp − t k(1)+1 ≤    )
                    −k + j ⎠
                                             ( )
                                                  r
             k =0 ⎝                           n1k

                  −1                     p +λ
                  ⎛ 1 ⎞                         ln n1k
        ≤         ∑
                 C⎜
                  ⎜ k + j ⎟⎟
                                                                  exp ( − k ) +
                                                ( )
                                                              r
          k =− A1 ⎝        ⎠                        n1k
              j −1                   p +λ
                ⎛ 1 ⎞                        ln n1k
          + C⎜∑          ⎟                                exp ( −k ) ≤
                  −k + j ⎠
                                            ( )
                                                     r
           k =0 ⎝                             n1k

                                             ⎛            ⎞
                                               N
                                         ln ⎜⎜            ⎟
                                                          ⎟
                                               k
                  −1
                            C                ⎜            ⎟
                                             ⎝e r         ⎠ exp − k +
          ≤       ∑               p +λ                    r    ( )
              k =− A1   j−k
                          ⎛     ⎞
                          ⎜ N ⎟
                          ⎜ k ⎟
                          ⎜ r ⎟
                          ⎝e    ⎠
                       ⎛ N ⎞
                    ln ⎜ k ⎟
     j −1
             C         ⎜ r ⎟
                       ⎝ e ⎠ exp − k ≤ CN − r ln N ;
  +     ∑      p +λ          r
                                 ( )
    k =0 j − k       ⎛ N ⎞
                     ⎜     ⎟
                     ⎜ kr ⎟
                     ⎝e ⎠
        t1j + 2
                  ϕ(τ) − ϕ N (τ)                                                       p
r2i =     ∫                         d τ ≤ C max ( ϕ(τ) − ϕ N (τ) ) .
                           p +λ
        t1j −1
                     τ−t


                                         51