Проблемное обучение в начальной школе - 31 стр.

UptoLike

Составители: 

29
тени от гномона (метрового шеста) в полдень 21 декабря. Докажите, что 21
декабря - самый короткий день в году” (Н.А. Погорелова). Здесь известное
и неизвестное не расчленены разными предложениями: в последнем пред-
ложении сообщается, что 21 декабря - самый короткий день в году, и в то
же время спрашивается о видимых доказательствах этого факта. Кроме
то-
го, условие содержит некоторые параметры решения данной задачи: чтобы
найти доказательства, надо установить связь между длиной тени от гномо-
на и долготой дня.
На третью форму указывает И.Я. Лернер: в тексте задачи может быть
предъявлено только неизвестное без условия в расчете на то, что учащиеся
имеют знания, которые
могли бы составить условие задачи. Пример (6 кл.,
темаПонятие о причастии”): “Можно ли о собаке, бродящей по лугу, ска-
зать, что она бродячая? Почему?” Задача дается ученикам до изучения те-
мы, и дети должны уловить в ней временный и постоянный характер при-
знака, обозначаемый двумя словами. Условие же здесьлишнее”, так
как
предполагается, что дети знают точное значение словабродячая” (без-
домная, не имеющая хозяина).
И все-таки следует учесть, что в начальной школе предпочтительнее
задачи с условием, так как его отсутствие может привести к ухудшению
проблемного видения”.
§
3. Типология проблемной задачи
И здесь имеется несколько подходов. Так, А.А
. Сайлибаев строит свою
типологию на основе степени самостоятельности учащихся, необходимой
при решении задач. Он выделяет два типа задач: 1) проблемно-познава-
тельные (большая самостоятельность) и 2) репродуктивно-познавательные
(меньшая самостоятельность).
Иной подход предлагает М.П. Пальянов. Он разделяет проблемные за-
дачи (“задания”) на: 1) требующие установления отношений между эле-
ментами знаний; 2) требующие определения
различий в сходных ситуаци-
ях; 3) требующие различного применения определительного объекта (по-
нятия, модели, образа); 4) требующие установления зависимости построе-
ния объекта; 5) имеющие несколько решений или позволяющие получить
решение разными способами; 6) требующие преобразования, сочетания
известных способов и получения нового способа; 7) задачи, решение кото-
рых возможно известным ученику способом, но имеется более эффектив-
ный способ, не лежащий наповерхности”. Недостаток данной типологии
состоит в том, что под нее не подведено единое логическое основание, из-
за чего некоторые типы задач дублируют друг друга. Так, при решении за-
тени от гномона (метрового шеста) в полдень 21 декабря. Докажите, что 21
декабря - самый короткий день в году” (Н.А. Погорелова). Здесь известное
и неизвестное не расчленены разными предложениями: в последнем пред-
ложении сообщается, что 21 декабря - самый короткий день в году, и в то
же время спрашивается о видимых доказательствах этого факта. Кроме то-
го, условие содержит некоторые параметры решения данной задачи: чтобы
найти доказательства, надо установить связь между длиной тени от гномо-
на и долготой дня.
    На третью форму указывает И.Я. Лернер: в тексте задачи может быть
предъявлено только неизвестное без условия в расчете на то, что учащиеся
имеют знания, которые могли бы составить условие задачи. Пример (6 кл.,
тема “Понятие о причастии”): “Можно ли о собаке, бродящей по лугу, ска-
зать, что она бродячая? Почему?” Задача дается ученикам до изучения те-
мы, и дети должны уловить в ней временный и постоянный характер при-
знака, обозначаемый двумя словами. Условие же здесь “лишнее”, так как
предполагается, что дети знают точное значение слова “бродячая” (без-
домная, не имеющая хозяина).
    И все-таки следует учесть, что в начальной школе предпочтительнее
задачи с условием, так как его отсутствие может привести к ухудшению
“проблемного видения”.

                  § 3. Типология проблемной задачи

    И здесь имеется несколько подходов. Так, А.А. Сайлибаев строит свою
типологию на основе степени самостоятельности учащихся, необходимой
при решении задач. Он выделяет два типа задач: 1) проблемно-познава-
тельные (большая самостоятельность) и 2) репродуктивно-познавательные
(меньшая самостоятельность).
    Иной подход предлагает М.П. Пальянов. Он разделяет проблемные за-
дачи (“задания”) на: 1) требующие установления отношений между эле-
ментами знаний; 2) требующие определения различий в сходных ситуаци-
ях; 3) требующие различного применения определительного объекта (по-
нятия, модели, образа); 4) требующие установления зависимости построе-
ния объекта; 5) имеющие несколько решений или позволяющие получить
решение разными способами; 6) требующие преобразования, сочетания
известных способов и получения нового способа; 7) задачи, решение кото-
рых возможно известным ученику способом, но имеется более эффектив-
ный способ, не лежащий на “поверхности”. Недостаток данной типологии
состоит в том, что под нее не подведено единое логическое основание, из-
за чего некоторые типы задач дублируют друг друга. Так, при решении за-

                                                                      29