Уравнения математической физики. Сборник задач. Даишев Р.А - 10 стр.

UptoLike

Составители: 

U|
y=sin x
= ϕ
0
(x);
U
y
|
y=sin x
= ϕ
1
(x).
2
U
x
2
+ 4
2
U
x∂y
5
2
U
y
2
+
U
x
U
y
= 0,
U|
y=0
= f(x);
U
y
|
y=0
= F (x).
x
(
µ
1
x
h
2
U
x
)
=
1
a
2
µ
1
x
h
2
2
U
t
2
,
U|
t=0
= f(x);
U
t
|
t=0
= F (x).
2
U
t
2
= a
2
(
2
U
x
2
+
2
U
y
2
+
2
U
z
2
),
U|
t=0
= ϕ(r);
U
t
|
t=0
= ψ(r),
r =
x
2
+ y
2
+ z
2
, ϕ(r) ψ(r)
r 0
2
U
t
2
=
2
U
x
2
óäîâëåòâîðÿþùåå íà÷àëüíûì óñëîâèÿì:
                                       ∂U
            U |y=sin x = ϕ0 (x);          |y=sin x = ϕ1 (x).
                                       ∂y
   20. Íàéòè ðåøåíèå óðàâíåíèÿ:
            ∂ 2U     ∂ 2U     ∂ 2U   ∂U   ∂U
               2
                 + 4      − 5    2
                                   +    −    = 0,
            ∂x       ∂x∂y     ∂y     ∂x   ∂y
óäîâëåòâîðÿþùåå íà÷àëüíûì óñëîâèÿì:

                             ∂U
                U |y=0 = f (x); |y=0 = F (x).
                             ∂y
   21. Íàéòè ðåøåíèå óðàâíåíèÿ:
                (µ       ¶2        )         µ        ¶2
           ∂         x        ∂U           1      x        ∂ 2U
                  1−                   =      1 −               ,
           ∂x        h        ∂x           a2     h        ∂t2
óäîâëåòâîðÿþùåå íà÷àëüíûì óñëîâèÿì:
                                       ∂U
                U |t=0 = f (x);           |t=0 = F (x).
                                       ∂t
   22. Íàéòè ðåøåíèå âîëíîâîãî óðàâíåíèÿ:
                 ∂ 2U         2
                          2 ∂ U    ∂ 2U   ∂ 2U
                      = a  (     +      +      ),
                 ∂t2         ∂x2   ∂y 2   ∂z 2
óäîâëåòâîðÿþùåå íà÷àëüíûì óñëîâèÿì:
                                       ∂U
                 U |t=0 = ϕ(r);           |t=0 = ψ(r),
                                       ∂t
        √
ãäå r = x2 + y 2 + z 2 , ϕ(r) è ψ(r) - ôóíêöèè, çàäàííûå äëÿ
âñåõ r ≥ 0 ( ñëó÷àé öåíòðàëüíîé ñèììåòðèè ).
   23. Íàéòè ðåøåíèå óðàâíåíèÿ:
                              ∂ 2U   ∂ 2U
                                   =
                              ∂t2    ∂x2

                                   10