Уравнения математической физики. Сборник задач. Даишев Р.А - 33 стр.

UptoLike

Составители: 

π
2
h
l
sin
πx
l
π
2
h
l
2
sin
πx
l
=
X
i,k
c
i,k
sin
x
l
sin
kπy
m
,
c
i,k
=
0 i > 1
4πh
l
i = 1
0 i = 1
.
w
β(t)
β
00
i,k
(t) = a
2
Ã
i
2
π
2
l
2
+
k
2
π
2
m
2
!
β
i,k
(t) + a
2
c
i,k
(t)
β
i,k
(0) = 0.
i > 1
i = 1
β
i,k
= 0.
i = 1, β
1,k
β
00
1,k
(t) + a
2
π
2
Ã
1
l
2
+
k
2
m
2
!
β
1,k
(t) =
4πha
2
kl
2
,
β
i,k
(0) = 0, β
0
1,k
(0) =
=
4v
0
.
β
1,k
(t) =
4V
0
akπ
2
q
1
l
2
+
k
2
m
2
sin t
s
1
l
2
+
k
2
m
2
                                2
Ðàçëîæèì ôóíêöèþ − π l h sin πx
                              l
                                 â äâîéíîé ðÿä Ôóðüå ïî ñèíó-
ñàì:
            π2h    πx X                  iπx     kπy
           − 2 sin       =      ci,k sin     sin     ,
             l      l       i,k           l       m
ãäå                       
                          
                          
                          
                                0            i > 1 (k-ëþáîå)
                 ci,k =   
                            − 4πh
                               l
                                             i = 1 (k-íå÷åòíî) .
                          
                          
                                0            i = 1 k-÷åòíîå)
Ïîäñòàâëÿÿ w è ýòîò ðÿä â íåîäíîðîäíîå óðàâíåíèå , ïîëó÷èì
óðàâíåíèå äëÿ îïðåäåëåíèÿ β(t):
                               Ã                       !
          00               2       i2 π 2 k 2 π 2
         βi,k (t)   = −a                 +        βi,k (t) + a2 ci,k (t)
                                    l2     m2
ñ íà÷àëüíûìè óñëîâèÿìè

                                     βi,k (0) = 0.

Ðåøàÿ ýòè óðàâíåíèÿ, íàéäåì, ÷òî ïðè i > 1 (k-ëþáîå), à òàêæå
ïðè i = 1 (ê-÷åòíîå)
                          βi,k = 0.
Åñëè æå i = 1, ê - íå÷åòíîå, òî äëÿ β1,k óðàâíåíèå ñâîäèòñÿ ê
                                Ã                  !
           00             2 2       1    k2               4πha2
          β1,k   (t) + a π             +    β 1,k (t) = −       ,
                                    l 2 m2                 kl2

à íà÷àëüíûå óñëîâèÿ ïðèíèìàþò âèä: βi,k (0) = 0,                            0
                                                                           β1,k (0) =
= 4v
   kπ
     0
       .  ýòîì ñëó÷àå
                                                                s
                                    4V0                             1   k2
          β1,k (t) =                q                 sin aπt         +    −
                          akπ 2         1
                                             +   k2                 l2 m2
                                        l2       m2



                                              33