Уравнения математической физики. Сборник задач. Даишев Р.А - 39 стр.

UptoLike

Составители: 

U(r, ϕ) =
A
0
2
+
X
n=1
µ
r
a
n
(A
n
cos + B
n
sin ) , (1)
A
n
B
n
f(r).
A
n
=
1
π
2π
Z
0
f(r) cos nϕdϕ, (n = 0, 1, 2, ...), (2
1
)
B
n
=
1
π
2π
Z
0
f(r) sin nϕdϕ, (n = 1, 2, 3, ...). (2
2
)
U(r, ϕ) =
1
2π
2π
Z
0
a
2
r
2
a
2
+ r
2
2ar cos(ϕ ψ)
f(ψ).
U(r, ϕ),
0 r a,
1
r
r
Ã
r
U
r
!
+
1
r
2
2
U
φ
2
=
2
U
r
2
+
1
r
U
r
+
1
r
2
2
U
φ
2
= 0,
U|
r=a
= f(ϕ) f(ϕ)
                           ÎÒÂÅÒÛ È ÓÊÀÇÀÍÈß.

58.
                        ∞          µ ¶n
                   A0 X    r
      U (r, ϕ) =     +                    (An cos nϕ + Bn sin nϕ) ,             (1)
                   2   n=1 a

ãäå An è Bn - êîýôôèöèåíòû ðÿäà Ôóðüå ôóíêöèè f (r).
                2π
              1Z
         An =      f (r) cos nϕdϕ,               (n = 0, 1, 2, ...),    (21 )
              π
                   0

                 2π
               1Z
          Bn =      f (r) sin nϕdϕ,               (n = 1, 2, 3, ...).    (22 )
               π
                       0

Èç ôîðìóëû (1) ìîæíî ïîëó÷èòü èíòåãðàëüíîå ïðåäñòàâëåíèå
äëÿ ðåøåíèÿ ïåðâîé âíóòðåííåé çàäà÷è äëÿ óðàâíåíèÿ Ëàïëàñà
âíóòðè êðóãà (ôîðìóëà Ïóàññîíà):
                        2π
                      1 Z        a2 − r2
          U (r, ϕ) =                             f (ψ)dψ.
                     2π a2 + r2 − 2ar cos(ϕ − ψ)
                               0

   Ð å ø å í è å. Òðåáóåòñÿ íàéòè ôóíêöèþ U (r, ϕ), íåïðåðûâ-
íóþ â êðóãå 0 ≤ r ≤ a, óäîâëåòâîðÿþùóþ âíóòðè ýòîãî êðóãà
óðàâíåíèþ
             Ã         !
        1 ∂    ∂U              1 ∂ 2U   ∂ 2U   1 ∂U   1 ∂ 2U
             r             +          =      +      +        = 0,
        r ∂r   ∂r              r2 ∂φ2   ∂r2    r ∂r   r2 ∂φ2

è ãðàíè÷íîìó óñëîâèþ U |r=a = f (ϕ), ãäå f (ϕ)- çàäàííàÿ ôóíê-
öèÿ.



                                            39