Уравнения математической физики. Сборник задач. Даишев Р.А - 42 стр.

UptoLike

Составители: 

λ = k
2
, k = 0, 1, 2, ..
k k = 0
Φ
0
= 1
ˆ
Φ(ϕ) = cos kϕ
˜
Φ(ϕ) =
sin kϕ. λ = k
2
ˆ
R
k
(r) = r
k
˜
R
k
(r) = r
k
k = 0
ˆ
R
0
(r) = 1
˜
R
0
(r) = ln r.
U(r, ϕ) =
ˆa
0
2
+
X
k=1
a
k
r
k
cos kϕ + b
k
r
k
sin kϕ)+
+
˜a
0
2
lnr +
X
k=1
a
k
r
k
cos kϕ +
˜
b
k
r
k
sin kϕ).
r = l r = L
f(φ)
F (φ)
f(ϕ) F (ϕ)
ˆa
k
= ˜a
k
=
ˆ
b
k
=
˜
b
k
= 0 k > 0
U(r, ϕ) =
B A
ln L ln l
ln r +
A ln L B ln l
ln L ln l
=
B ln
r
l
+ A ln
L
r
ln
L
l
.
ˆa
k
=
1
l
k
L
k
l
k
L
k
1
π
π
Z
π
h
L
k
ϕ(ϕ) l
k
F (ϕ)
i
cos ϕdϕ,
˜a
k
=
1
l
k
L
k
l
k
L
k
1
π
π
Z
π
h
L
k
ϕ(ϕ) l
k
F (ϕ)
i
cos kϕdϕ,
ˆ
b
k
=
1
l
k
L
k
l
k
L
k
1
π
π
Z
π
h
L
k
ϕ(ϕ) l
k
F (ϕ)
i
sin kϕdϕ,
Èç óñëîâèÿ ïåðèîäè÷íîñòè íàõîäèì, ÷òî λ = k 2 , k = 0, 1, 2, .. è
êàæäîìó k (êðîìå k = 0, êîòîðîìó ñîîòâåòñòâóåò îäíî ðåøåíèå
Φ0 = 1) ñîîòâåòñòâóþò äâà ðåøåíèÿ, ò.å. Φ̂(ϕ) = cos kϕ è Φ̃(ϕ) =
sin kϕ. Ïîäñòàâëÿÿ λ = k 2 âî âòîðîå óðàâíåíèå, ïîëó÷àåì äâà
ëèíåéíî íåçàâèñèìûõ ðåøåíèÿ R̂k (r) = rk è R̃k (r) = r−k , à ïðè
k = 0 R̂0 (r) = 1 R̃0 (r) = ln r.  èòîãå ïîëó÷èì
                             ∞
                       â0 X
          U (r, ϕ) =      +     (âk rk cos kϕ + bk rk sin kϕ)+
                        2   k=1

                          X∞
                ã0
            +       lnr +     (ãk r−k cos kϕ + b̃k r−k sin kϕ).
                 2        k=1
Äëÿ íàõîæäåíèÿ êîýôôèöèåíòîâ, èñïîëüçóåì ãðàíè÷íûå óñëî-
âèÿ: ïîäñòàâëÿÿ r = l è r = L â ðåøåíèå, ïðèðàâíèâàÿ èõ ñîîò-
âåòñòâóþùèì ÷ëåíàì ðàçëîæåíèÿ â ðÿä Ôóðüå ôóíêöèé f (φ) è
F (φ) ïîëó÷èì ñîîòíîøåíèÿ äëÿ íàõîæäåíèÿ âñåõ êîýôôèöèåí-
òîâ.  ÷àñòíîì ñëó÷àå, êîãäà f (ϕ) è F (ϕ)-êîíñòàíòû, ïîëó÷èì
âk = ãk = b̂k = b̃k = 0 ïðè k > 0 è
                  B−A              A ln L − B ln l   B ln rl + A ln Lr
   U (r, ϕ) =               ln r +                 =                   .
                ln L − ln l          ln L − ln l            ln Ll
 îáùåì ñëó÷àå
                           π
                1       1 Z h −k          −k
                                                  i
     âk = k −k              L   ϕ(ϕ) − l    F (ϕ)  cos ϕdϕ,
           l L − l−k Lk π
                               −π
                           π
                 1       1Z h k          k
                                                i
      ãk = −k k             L  ϕ(ϕ) − l   F (ϕ)  cos kϕdϕ,
            l L − lk L−k π
                                −π

                           π
                1       1 Z h −k          −k
                                                  i
     b̂k = k −k              L   ϕ(ϕ) − l    F (ϕ)  sin kϕdϕ,
           l L − l−k Lk π
                               −π


                                     42