Уравнения математической физики. Сборник задач. Даишев Р.А - 45 стр.

UptoLike

Составители: 

U(r, ϕ) =
X
n=1
³
A
n
r
πn
α
+ B
n
r
πn
α
´
sin
πn
α
ϕ,
f
n
=
2
α
α
Z
0
f(ϕ) sin
πn
α
ϕdϕ, F
n
=
2
α
α
Z
0
F (ϕ) sin
πn
α
ϕdϕ,
A
n
=
b
πn
α
F
n
a
πn
α
f
n
b
2
πn
α
a
2
πn
α
, B
n
=
b
πn
α
f
n
a
πn
α
F
n
b
2
πn
α
a
2
πn
α
(ab)
πn
α
.
a 0 B
n
= 0, A
n
=
F
n
b
πn
α
b
A
n
= 0, B
n
= f
n
a
πn
α
U(r, ϕ) =
X
n=1
f
n
µ
a
r
πn
α
sin
πn
α
ϕ.
U(x, t) =
X
k=1
c
k
r
sin
πkr
l
e
π
2
k
2
a
2
l
2
t
, c
k
=
2
l
l
Z
0
f(r) sin
πkr
l
dr
U(r, t) = 2U
0
P
n=1
(1)
n+1
e
n
2
π
2
a
2
l
2
t
sin
nπr
l
nπr
l
.
R(r)
rR
00
+ 2R
0
+ λ
2
rR = 0
y = rR
y
00
+ λ
2
y = 0.
67.                            ∞ ³
                               X             πn             πn
                                                                    ´            πn
               U (r, ϕ) =             An r   α    + Bn r− α sin                     ϕ,
                               n=1                                               α
ãäå
                   α                                            α
            2Z           πn                             2Z           πn
       fn =    f (ϕ) sin    ϕdϕ,                   Fn =    F (ϕ) sin    ϕdϕ,
            α            α                              α            α
               0                                                0

                   πn         πn                           πn                    πn
            b α F n − a α fn                      b α fn − a α F n     πn
        An = 2 πn       πn   ,                Bn = 2 πn     2 πn
                                                                   (ab) α .
              b α − a2 α                            b  α −a   α


×àñòíûå ñëó÷àè: ïðè a → 0 èìååì Bn = 0, An = Fπn   n
                                                     è ïîëó-
                                                 b α
÷àåì ðåøåíèå çàäà÷è äëÿ êðóãîâîãî ñåêòîðà; ïðè b → ∞ èìååì
                 πn
An = 0, Bn = fn a α è
                                      ∞
                                      X           µ ¶ πn
                                                   a   α            πn
                         U (r, ϕ) =         fn             sin         ϕ.
                                      n=1          r                α

68.
                                                                             l
                   X ck        πkr − π2 k22 a2 t            2Z           πkr
      U (x, t) =           sin    e l            ,     ck =    f (r) sin     dr
                   k=1   r      l                           l             l
                                                                         0

                                             ∞
                                             P                          n2 π 2 a2 sin nπr
÷àñòíîì ñëó÷àå: U (r, t) = 2U0                     (−1)n+1 e−              l2
                                                                                 t
                                                                                    nπr
                                                                                        l
                                                                                            .
                                            n=1                                       l
Ó ê à ç à í è å. Ïðè ðåøåíèè ìåòîäîì Ôóðüå â óðàâíåíèè äëÿ
R(r);

                              rR00 + 2R0 + λ2 rR = 0
óäîáíî ñäåëàòü çàìåíó y = rR, òîãäà èñõîäíîå óðàâíåíèå ïðè-
âåäåòñÿ ê âèäó
                        y 00 + λ2 y = 0.


                                             45