Уравнения математической физики. Сборник задач. Даишев Р.А - 54 стр.

UptoLike

Составители: 

d
2
y
dx
2
+
1
x
dy
dx
+ (1
ν
2
x
2
)y = 0,
ν
ν :
J
±ν
(x) =
X
k=0
(1)
k
1
Γ(k ±ν + 1)k !
µ
x
2
2k±ν
.
ν > 0.
νJ
ν
(x)
x
J
0
ν
(x) = J
ν+1
(x), (1)
νJ
ν
(x)
x
+ J
0
ν
(x) = J
ν1
(x). (2)
ν = 0 ν = 1
dJ
0
(x)
dx
= J
1
(x);
d[xJ
1
(x)]
dx
= x · J
0
(x).
J
ν+1
(x) =
2ν
x
J
ν
(x) J
ν1
(x).
  Ÿ9. Ñïåöèàëüíûå ôóíêöèè.

  Ðåøåíèåì óðàâíåíèÿ Áåññåëÿ

                 d2 y 1 dy        ν2
                     +     + (1 −    )y = 0,
                 dx2 x dx         x2
ãäå ν - ëþáîå âåùåñòâåííîå ÷èñëî, ÿâëÿåòñÿ ôóíêöèÿ Áåññåëÿ
èíäåêñà ν :
                   ∞
                   X                           µ ¶2k±ν
                             k    1        x
         J±ν (x) =     (−1)                                 .
                   k=0      Γ(k ± ν + 1)k! 2

 ýòîé ôîðìóëå ïðåäïîëàãàåòñÿ, ÷òî ν > 0.
   Äëÿ ôóíêöèé Áåññåëÿ èìåþò ìåñòî ñëåäóþùèå ôîðìóëû
äèôôåðåíöèðîâàíèÿ:

                  νJν (x)
                          − Jν0 (x) = Jν+1 (x),                 (1)
                    x
                 νJν (x)
                         + Jν0 (x) = Jν−1 (x).      (2)
                   x
 ÷àñòíîñòè, ïðè ν = 0 äëÿ ôîðìóëû (1) è ïðè ν = 1 äëÿ
ôîðìóëû (2), ïîëó÷èì:

           dJ0 (x)               d[xJ1 (x)]
                   = −J1 (x);               = x · J0 (x).
             dx                     dx
Âû÷èòàÿ ôîðìóëó (2) èç ôîðìóëû (1), ïîëó÷èì ðåêóððåíòíîå
ñîîòíîøåíèå, ïîçâîëÿþùåå âûðàçèòü êàæäóþ ñëåäóþùóþ ôóíê-
öèþ Áåññåëÿ ÷åðåç äâå ïðåäûäóùèå:
                             2ν
                Jν+1 (x) =      Jν (x) − Jν−1 (x).
                             x


                                 54