Уравнения математической физики. Сборник задач. Даишев Р.А - 60 стр.

UptoLike

Составители: 

f(θ) = sin
2
θ 0 < θ < π
{P
n
(cos θ)}.
P
n
m
= (1 x
2
)
n
2
·[P
m
(x)]
(n)
, P
m
(x)
m
P
1
1
(x), P
1
2
(x), P
1
3
(x), P
2
2
(x), P
2
3
(x), P
2
4
(x).
J
1
2
(x) =
q
2
πx
sin x.
J
1
2
=
q
2
πx
cos x.
J
3
2
(x) =
q
2
πx
(
sin x
x
cos x)
J
5
2
(x) =
q
2
πx
³
3
sin x
x
2
3
cos x
x
sin x
´
.
N
1
2
(x) =
q
2
πx
sin x
1; 0; 0; 0.
a)J
1
(x) =
2
x
J
1
(x) J
0
(x); b)J
3
(x) =
4
x
J
2
(x) J
1
(x);
c)J
4
(x) =
24x
2
x
2
J
2
(x)
6
x
J
1
(x).
y(x) = C
1
J
n
(αx) + C
2
N
n
(αx).
y(x) = C
1
J
1
3
(2x) + C
2
J
1
3
(2x).
y(x) =
1
x
[C
1
J
1
(2x) + C
2
N
1
(2x)]
y =
z
x
.
y(x) =
1
x
2
(C
1
J
2
(x) + C
2
N
2
(x)).
1 = 2
X
k=1
1
µ
(0)
k
J
1
³
µ
(0)
k
´
J
0
µ
(0)
k
x
l
.
x
2
= 2l
2
X
k=1
1
µ
(2)
k
J
3
³
µ
(2)
k
´
J
2
µ
(2)
k
x
l
.
   112. Ðàçëîæèòü ôóíêöèþ f (θ) = sin2 θ íà ó÷àñòêå 0 < θ < π
ïî îðòîãîíàëüíîé ñèñòåìå {Pn (cos θ)} .
                                 n
   113. Ôóíêöèÿ Pm n
                     = (1 − x2 ) 2 · [Pm (x)](n) , ( ãäå Pm (x)− ïîëè-
íîì Ëåæàíäðà ñòåïåíè m ) íàçûâàåòñÿ ïðèñîåäèí¼ííîé ôóíê-
öèåé Ëåæàíäðà.
   Âû÷èñëèòü: P11 (x), P21 (x), P31 (x), P22 (x), P32 (x), P42 (x).

                              ÎÒÂÅÒÛ È ÓÊÀÇÀÍÈß.
                      q
                           2
   83.J 1 (x) =           πx
                               sin x.
          2           q
                       2
   84. J− 1 =         πx
                              cos x.
                  2   q
                         2 sin x
   89. J 3 (x) =          (      − cos x)
              2       q πx³ x                            ´
                           2
   90 J 5 (x) =           πx
                                3 sin
                                   x2
                                      x
                                        − 3 cosx x − sin x .
          2               q
                      2
   91. N− 1 (x) = πx     sin x
           2
   92. 1; 0; 0; 0.
   93. a)J1 (x) = x2 J1 (x) − J0 (x);             b)J3 (x) = x4 J2 (x) − J1 (x);

                          2
   c)J4 (x) = 24−x
                x2
                    J2 (x) − x6 J1 (x).
   96. y(x) = C1 Jn (αx) + C2 Nn (αx).
   97. y(x) = C1 J 1 (2x) + C2 J− 1 (2x).
                    3                3
   98. y(x) = x1 [C1 J1 (2x) + C2 N1 (2x)].
   Ó ê à ç à í è å. Ñäåëàòü çàìåíó y = xz .
   99. y(x) = x12 (C1 J2 (x) + C2 N2 (x)).
   100.                                                   
                          ∞                          (0)
                         X          1              µ     x
                 1=2                 ³      ´ J0  k  .
                              (0)       (0)           l
                         k=1 µk J1 µk

   101.                                                             
                                   ∞                           (2)
                                   X          1     µ x
                      x2 = 2l2          ³     ´ J2  k .
                                    (2)   (2)         l
                               k=1 µk J3 µk


                                             60