Уравнения математической физики. Сборник задач. Даишев Р.А - 65 стр.

UptoLike

Составители: 

U(0, t) U(R, t) = 0
U(r, 0) = A
³
1
r
2
R
2
´
, A
U(r,0)
t
= 0.
x
Z
0
xJ
0
(x)dx = xJ
1
(x),
x
Z
0
x
3
J
0
(x)dx = 2x
2
J
0
(x) + (x
3
4x)J
1
(x).
U(r, ϕ, t) =
l
100
cos
(0)
1
t
l
J
0
µ
µ
(0)
1
r
l
,
µ
(0)
1
J
0
.
U(r, ϕ, t) =
P
k=1
2cl
[µ
(0)
k
]
2
J
1
(µ
(0)
k
)
sin
(0)
k
t
l
J
0
µ
µ
(0)
k
r
l
,
µ
(0)
1
J
0
.
U(r, t) =
2
R
2
P
n=1
e
ht
³
cos q
n
t +
h
q
n
sin q
n
t
´
×
×
J
o
³
µ
n
r
R
´
J
2
0
(µ
n
)
R
Z
0
ρφ(ρ)J
o
µ
µ
n
ρ
R
dρ,
q
n
=
q
a
2
µ
2
n
R
2
, µ
1
, µ
2
, µ
3
, ...
J
0
.
2
U
2
r
+
1
r
U
r
1
a
2
2
U
2
t
=
P
T
U(0, t)
U(R, t) = 0, U(r, 0) = 0,
U(r, 0)
r
= 0.
ïðè óñëîâèè,³
              ÷òî U´(0, t) ðàâíî êîíå÷íîé âåëè÷èíå, U (R, t) = 0,
                   2
U (r, 0) = A 1 − Rr 2 , ãäå A - const, ∂U∂t
                                         (r,0)
                                               = 0.
    Ïðè íàõîæäåíèè êîýôôèöèåíòîâ ðàçëîæåíèÿ èñïîëüçîâàòü
ñëåäóþùèå ôîðìóëû:
Zx                                     Zx
     xJ0 (x)dx = xJ1 (x),                   x3 J0 (x)dx = 2x2 J0 (x) + (x3 − 4x)J1 (x).
0                                      0

                                                        (0)
                                                               µ    (0)
                                                                            ¶
                                       l            aµ1 t          µ1 r
115.            U (r, ϕ, t) =         100
                                            cos       l
                                                          J0         l
                                                                             ,
        (0)
ãäå µ1 - åñòü ïåðâûé ïîëîæèòåëüíûé êîðåíü áåññåëåâîé ôóíê-
öèè J0 .                                            µ (0) ¶
                       ∞
                       P                    (0)
                                          aµk t      µk r
                              2cl
116.     U (r, ϕ, t) =   (0) 2    (0) sin   l
                                                J 0    l
                                                           ,
                                  k=1 [µk ] J1 (µk )
       (0)
ãäå   µ1      - åñòü 1-ûé ïîëîæèòåëüíûé êîðåíü áåññåëåâîé ôóíêöèè
J0 .                                                ³                                ´
                                  ∞
                                  P
                             2                                          h
117.           U (r, t) =    R2
                                        e−ht cos qn t +                qn
                                                                            sin qn t ×
                                  n=1
                                  ³         ´
                             Jo µn Rr ZR                           µ             ¶
                                                                        ρ
                         ×                           ρφ(ρ)Jo         µn   dρ,
                              J02 (µn )                                 R
                                                0
               q   2 2
ãäå qn = aRµ2n , à µ1 , µ2 , µ3 , ... - åñòü ïîëîæèòåëüíûå êîðíè áåñ-
ñåëåâîé ôóíêöèè J0 .
118. Ó ê à ç à í è å. Çàäà÷à ïðèâîäèòñÿ ê èíòåãðèðîâàíèþ óðàâ-
íåíèÿ
                   ∂ 2U      1 ∂U        1 ∂ 2U    P
                      2
                         +            −   2   2
                                                =−
                    ∂ r      r ∂r        a ∂ t     T
ïðè óñëîâèè, ÷òî U (0, t) ðàâíî êîíå÷íîé âåëè÷èíå, à

                                                                          ∂U (r, 0)
                   U (R, t) = 0,            U (r, 0) = 0,                           = 0.
                                                                            ∂r

                                                        65