Уравнения математической физики. Сборник задач. Даишев Р.А - 66 стр.

UptoLike

Составители: 

U(r, t) =
a
2
P
0
T ω
2
·
J
0
(
ω
r
a
)
J
0
(
ω
R
a
)
1
¸
sin ωt
2aP
0
ωR
3
T
X
n=1
sin
µ
n
at
R
J
0
³
µ
n
r
R
´
µ
2
n
(ω
2
R
2
a
2
µ
2
n
) J
0
0
(µ
n
)
.
R
00
(r) +
1
r
R
0
(r)
1
r
2
R(r) = λR(r)
|R(0)| < , R(3) = 0.
λ = m
2
R
00
(r) +
1
r
R
0
(r)
1
r
2
R(r) = m
2
R(r).
r = mx
R
00
(x) +
1
x
R
0
(x) + (1
1
x
2
)R(x) = 0
R(x) = C
1
J
1
(x) + C
2
N
1
(x).
C
2
N
1
(x)
x = 0 R(x) = R(mr)|
r=3
= 0
3m = µ
1
, µ
2
, ... J
1
(µ
k
) = 0
m =
µ
k
3
U(r, t) = T
k
(t)J
1
(
µ
k
r
3
)
                                     ·                   ¸
                             a2 P0       J0 (ω ar )
119.            U (r, t) =               J0 (ω R
                                                      − 1 sin ωt −
                                               a)
                             T ω2

                                                           ³    ´
              2aP0 ωR3 X∞      sin µnRat J0 µRn r
            −               2   2 2       2 2     0
                                                     .
                 T     n=1 µn (ω R − a µn ) J0 (µn )

120. Ð å ø å í è å. Ðåøåíèå óðàâíåíèÿ êîëåáàíèé ñ âíåøíåé
ñèëîé èùåì â âèäå ðàçëîæåíèÿ â ðÿä ïî ñîáñòâåííûì ôóíêöèÿì
êðàåâîé çàäà÷è
                         1         1
                R00 (r) + R0 (r) − 2 R(r) = λR(r)
                         r        r
ñ ãðàíè÷íûìè óñëîâèÿìè: |R(0)| < ∞, R(3) = 0. Ýòî óðàâ-
íåíèå èìååò ðåøåíèÿ, óäîâëåòâîðÿþùåå ãðàíè÷íûì óñëîâèÿì
òîëüêî ïðè îòðèöàòåëüíûõ çíà÷åíèÿõ êîíñòàíòû ðàçäåëåíèÿ:
λ = −m2 è óðàâíåíèå äëÿ ñîáñòâåííûõ ôóíêöèé ïðèíèìàåò
âèä:
                     1         1
            R00 (r) + R0 (r) − 2 R(r) = −m2 R(r).
                     r        r
Çàìåíîé r = mx îíî ïðèâîäèòñÿ ê óðàâíåíèþ Áåññåëÿ
                        1              1
               R00 (x) + R0 (x) + (1 − 2 )R(x) = 0
                        x             x
ðåøåíèå êîòîðîãî èìååò âèä:           R(x) = C1 J1 (x) + C2 N1 (x).
Êîíñòàíòó C2 íóæíî ïîëîæèòü ðàâíîé íóëþ, òàê êàê N1 (x) íå
îãðàíè÷åíà ïðè x = 0. Ãðàíè÷íîå óñëîâèå R(x) = R(mr)|r=3 = 0
äàåò: 3m = µ1 , µ2 , ..., ãäå J1 (µk ) = 0 è êîíñòàíòà ðàçäåëåíèÿ
ðàâíà m = µ3k . Ðåøåíèå èñõîäíîãî óðàâíåíèÿ èùåì â âèäå
                                                       µk r
                      U (r, t) = Tk (t)J1 (                 )
                                                        3


                                         66