Уравнения математической физики. Сборник задач. Даишев Р.А - 67 стр.

UptoLike

Составители: 

J
1
(
µ
k
r
3
) sin
µ
1
r
3
=
X
k=1
f
k
(t)J
1
(
µ
k
r
3
)
f
k
(t) f
k
(t) = δ
k,1
sin µ
1
t
U(r, t)
4
X
k=1
T
k
(t)J
1
(
µ
k
r
3
) =
=
X
k=1
T
k
(t)J
1
(
µ
k
r
3
)
µ
J
00
1
(
µ
k
r
3
) +
1
r
J
0
1
(
µ
k
r
3
)
1
r
2
J
1
(
µ
k
r
3
)
+f
k
(t)J
1
(
µ
k
r
3
)
J
1
(
µ
k
r
3
)
m
2
J
1
(
µ
k
r
3
)
µ
J
00
1
(
µ
k
r
3
) +
1
r
J
0
1
(
µ
k
r
3
)
1
r
2
J
1
(
µ
k
r
3
)
= (
µ
k
r
3
)
2
J
1
(
µ
k
r
3
)
µ
k
T
k
(t)
4T
00
k
(t) + (
µ
k
3
)
2
T
k
(t) = f
k
(t),
T
1
(t) = α
1
sin
µ
1
t
6
+ β
1
cos
µ
1
t
6
9
35µ
2
1
sin µ
1
t,
T
k
(t) = α
k
sin
µ
k
t
6
+ β
k
cos
µ
k
t
6
.
Ðàñêëàäûâàÿ â ðÿä âûíóæäàþùóþ ñèëó
                                                ∞
                              µk r       µ1 r X               µk r
                       J1 (        ) sin     =     fk (t)J1 (      )
                               3          3    k=1             3

(êîýôôèöèåíòû fk (t) ëåãêî îïðåäåëÿþòñÿ è ðàâíû fk (t) = δk,1 sin µ1 t)
è ïîäñòàâëÿÿ âìåñòå c U (r, t) â èñõîäíîå óðàâíåíèå, ïîëó÷èì
                                      ∞
                                      X                  µk r
                                  4         Tk (t)J1 (        )=
                                      k=1                 3
         ∞
         X                            µ                                      ¶
                      µk r          µk r     1     µk r     1      µk r
     =     Tk (t)J1 (      ) J100 (      ) + J10 (      ) − 2 J1 (      )
       k=1             3             3       r      3      r        3
                                            µk r
                             +fk (t)J1 (         )
                                             3
   Èñïîëüçóÿ óðàâíåíèå Áåññåëÿ äëÿ ôóíêöèè J1 ( µ3k r ) âûðàæå-
íèå â êðóãëûõ ñêîáêàõ â ïðàâîé ÷àñòè ïîñëåäíåãî óðàâíåíèÿ
çàìåíèì íà −m2 J1 ( µ3k r ), ò.å.
     µ                                                       ¶
              µk r      1      µk r     1      µk r        µk r 2 µk r
       J100 (      )   + J10 (      ) − 2 J1 (      ) = −(     ) J1 (   )
              3         r       3      r        3           3         3
è ïðèðàâíèâàÿ íóëþ êîýôôèöèåíòû ïðè ôóíêöèÿõ Áåññåëÿ ñ
îäèíàêîâûìè çíà÷åíèÿìè µk , ïîëó÷èì óðàíåíèå äëÿ îïðåäåëå-
íèÿ Tk (t):
                              µk
                 4Tk00 (t) + ( )2 Tk (t) = fk (t),
                              3
ðåøåíèå êîòîðîãî èìååò âèä:
                                      µ1 t          µ1 t     9
             T1 (t) = α1 sin               + β1 cos      −       sin µ1 t,
                                       6             6     35µ21
                                                µk t          µk t
                         Tk (t) = αk sin             + βk cos      .
                                                 6             6

                                                 67