Дифференциальные уравнения. Учебное пособие - 20 стр.

UptoLike

Рубрика: 

20 §3. ìÉÎÅÊÎÙÅ ÕÒÁ×ÎÅÎÉÑ É ÕÒÁ×ÎÅÎÉÑ âÅÒÎÕÌÌÉ
îÁÊÄÅÍ y
0
(x) É ÐÏÄÓÔÁ×ÉÍ × ÕÒÁ×ÎÅÎÉÅ (22):
y
0
= u
0
(x) · v(x) + u(x) · v
0
(x),
u
0
(x) · v(x) + u(x) · v
0
(x) + P (x) · u(x)v(x) = Q(x).
äÁÌÅÅ ÓÇÒÕÐÐÉÒÕÅÍ ×ÔÏÒÏÊ É ÔÒÅÔÉÊ ÞÌÅÎÙ ÜÔÏÇÏ ÕÒÁ×ÎÅÎÉÑ É ×ÙÎÅÓÅÍ ÚÁ
ÓËÏÂËÉ u(x):
u
0
(x)v(x) + u(x)[v
0
(x) + P (x) · v(x)] = Q(x). (23)
÷ÙÂÅÒÅÍ ÔÅÐÅÒØ ÆÕÎËÃÉÀ v(x) ÔÁË, ÞÔÏÂÙ ×ÙÒÁÖÅÎÉÅ × Ë×ÁÄÒÁÔÎÙÈ ÓËÏÂËÁÈ
ÏÂÒÁÔÉÌÏÓØ × ÎÕÌØ, ÔÏ ÅÓÔØ v(x) ÎÁÈÏÄÉÍ ÉÚ ÕÒÁ×ÎÅÎÉÑ
v
0
(x) + P (x)v(x) = 0. (24)
òÅÛÁÅÍ ÜÔÏ ÕÒÁ×ÎÅÎÉÅ
dv(x)
dx
+ P (x)v(x) = 0, dv(x) + P (x)v(x) dx = 0
üÔÏ ÕÒÁ×ÎÅÎÉÅ Ó ÒÁÚÄÅÌÑÀÝÉÍÉÓÑ ÐÅÒÅÍÅÎÎÙÍÉ:
dv(x)
v(x)
= P (x) dx,
Z
dv(x)
v(x)
=
Z
P (x) dx
ln |v(x)| =
Z
P (x) dx + ln C;
ÐÏÔÅÎÃÉÒÕÑ ÏÂÅ ÞÁÓÔÉ, ÐÏÌÕÞÉÍ
v(x) = Ce
R
P (x) dx
.
íÙ ÐÏÌÕÞÉÌÉ ÃÅÌÏÅ ÓÅÍÅÊÓÔ×Ï ÆÕÎËÃÉÊ v(x). îÁÍ ÄÏÓÔÁÔÏÞÎÏ ×ÙÂÒÁÔØ ÏÄÎÕ
ÆÕÎËÃÉÀ ÜÔÏÇÏ ÓÅÍÅÊÓÔ×Á. ÷ÙÂÅÒÅÍ ÔÕ, ËÏÔÏÒÁÑ ÐÏÌÕÞÁÅÔÓÑ ÐÒÉ c = 1
v(x) = e
R
P (x) dx
.
äÌÑ ÎÁÈÏÖÄÅÎÉÑ u(x) ÐÏÄÓÔÁ×ÉÍ ÎÁÊÄÅÎÎÏÅ v(x) × ÕÒÁ×ÎÅÎÉÅ (23), ÐÏÌÕÞÉÍ
u
0
(x)e
R
P (x) dx
= Q(x).
òÅÛÁÅÍ ÜÔÏ ÕÒÁ×ÎÅÎÉÅ
du(x)
dx
= Q(x)e
R
P (x) dx
, u =
Z
Q(x)e
R
P (x) dx
dx + C,
ÇÄÅ C ¡ ÐÒÏÉÚ×ÏÌØÎÁÑ ÐÏÓÔÏÑÎÎÁÑ. ðÏÄÓÔÁ×ÌÑÑ u(x) É v(x) × y = u(x) ·v(x),
ÐÏÌÕÞÁÅÍ ÒÅÛÅÎÉÅ ÄÁÎÎÏÇÏ ÕÒÁ×ÎÅÎÉÑ × ×ÉÄÅ
y(x) =
Z
Q(x)e
R
P (x) dx
dx + C
e
R
P (x) dx
. (25)
20                           §3. ìÉÎÅÊÎÙÅ ÕÒÁ×ÎÅÎÉÑ É ÕÒÁ×ÎÅÎÉÑ âÅÒÎÕÌÌÉ

     îÁÊÄÅÍ y 0 (x) É ÐÏÄÓÔÁ×ÉÍ × ÕÒÁ×ÎÅÎÉÅ (22):
                          y 0 = u0(x) · v(x) + u(x) · v 0 (x),
               u0(x) · v(x) + u(x) · v 0 (x) + P (x) · u(x)v(x) = Q(x).
äÁÌÅÅ ÓÇÒÕÐÐÉÒÕÅÍ ×ÔÏÒÏÊ É ÔÒÅÔÉÊ ÞÌÅÎÙ ÜÔÏÇÏ ÕÒÁ×ÎÅÎÉÑ É ×ÙÎÅÓÅÍ ÚÁ
ÓËÏÂËÉ u(x):
                  u0 (x)v(x) + u(x)[v 0(x) + P (x) · v(x)] = Q(x).                               (23)
÷ÙÂÅÒÅÍ ÔÅÐÅÒØ ÆÕÎËÃÉÀ v(x) ÔÁË, ÞÔÏÂÙ ×ÙÒÁÖÅÎÉÅ × Ë×ÁÄÒÁÔÎÙÈ ÓËÏÂËÁÈ
ÏÂÒÁÔÉÌÏÓØ × ÎÕÌØ, ÔÏ ÅÓÔØ v(x) ÎÁÈÏÄÉÍ ÉÚ ÕÒÁ×ÎÅÎÉÑ
                               v 0 (x) + P (x)v(x) = 0.                                          (24)
òÅÛÁÅÍ ÜÔÏ ÕÒÁ×ÎÅÎÉÅ
            dv(x)
                   + P (x)v(x) = 0, dv(x) + P (x)v(x) dx = 0
              dx
üÔÏ ÕÒÁ×ÎÅÎÉÅ Ó ÒÁÚÄÅÌÑÀÝÉÍÉÓÑ ÐÅÒÅÍÅÎÎÙÍÉ:
              dv(x)                   dv(x)
                                    Z           Z
                    = −P (x) dx,            = − P (x) dx
               v(x)                   v(x)
                                   Z
                     ln |v(x)| = − P (x) dx + ln C;

ÐÏÔÅÎÃÉÒÕÑ ÏÂÅ ÞÁÓÔÉ, ÐÏÌÕÞÉÍ
                                                     R
                                v(x) = Ce−               P (x) dx
                                                                    .
íÙ ÐÏÌÕÞÉÌÉ ÃÅÌÏÅ ÓÅÍÅÊÓÔ×Ï ÆÕÎËÃÉÊ v(x). îÁÍ ÄÏÓÔÁÔÏÞÎÏ ×ÙÂÒÁÔØ ÏÄÎÕ
ÆÕÎËÃÉÀ ÜÔÏÇÏ ÓÅÍÅÊÓÔ×Á. ÷ÙÂÅÒÅÍ ÔÕ, ËÏÔÏÒÁÑ ÐÏÌÕÞÁÅÔÓÑ ÐÒÉ c = 1
                                                 R
                                 v(x) = e−           P (x) dx
                                                                .
äÌÑ ÎÁÈÏÖÄÅÎÉÑ u(x) ÐÏÄÓÔÁ×ÉÍ ÎÁÊÄÅÎÎÏÅ v(x) × ÕÒÁ×ÎÅÎÉÅ (23), ÐÏÌÕÞÉÍ
                                        R
                              u0(x)e−       P (x) dx
                                                         = Q(x).
òÅÛÁÅÍ ÜÔÏ ÕÒÁ×ÎÅÎÉÅ
               du(x)        R
                                                  Z                     R
                     = Q(x)e P (x) dx , u =               Q(x)e             P (x) dx
                                                                                       dx + C,
                dx
ÇÄÅ C ¡ ÐÒÏÉÚ×ÏÌØÎÁÑ ÐÏÓÔÏÑÎÎÁÑ. ðÏÄÓÔÁ×ÌÑÑ u(x) É v(x) × y = u(x) · v(x),
ÐÏÌÕÞÁÅÍ ÒÅÛÅÎÉÅ ÄÁÎÎÏÇÏ ÕÒÁ×ÎÅÎÉÑ × ×ÉÄÅ
                      Z      R
                                               R
               y(x) =    Q(x)e P (x) dx dx + C e− P (x) dx .          (25)