Теория вероятностей и математическая статистика. Ч.2. Фарафонов В.Г - 64 стр.

UptoLike

Случай 1. Нулевая гипотеза 𝐻
0
: 𝑀[𝑋
0
] = 𝑎
0
, конкуриру-
ющая гипотеза 𝐻
1
: 𝑀[𝑋] = 𝑎
0
.
Φ
0
(𝑈
0.1
) =
1 0.1
2
= 0.45 = 𝑈
0.1
= 1.65 .
Находим, что
𝑈
=
(¯𝑥 𝑎
0
)
𝑛
𝜎
=
(4.7 5)
25
3
= 0.5 .
Так как 𝑈
< 𝑈
0.1
, то нулевая гипотеза принимается.
Случай 2. Нулевая гипотеза 𝐻
0
: 𝑀[𝑋
0
] = 𝑎
0
, конкуриру-
ющая гипотеза 𝐻
1
: 𝑀[𝑋] > 𝑎
0
.
Φ
0
(𝑈
0.1
) =
1
2
0.1 = 0.40 = 𝑈
0.1
= 1.28 .
Нулевая гипотеза принимается, так как 𝑈
< 𝑈
0.1
.
Случай 3. Нулевая гипотеза 𝐻
0
: 𝑀[𝑋
0
] = 𝑎
0
, конкуриру-
ющая гипотеза 𝐻
1
: 𝑀[𝑋] < 𝑎
0
.
Φ
0
(𝑈
0.1
) =
1
2
0.1 = 0.40 = 𝑈
0.1
= 1.28 .
Нулевая гипотеза принимается, ибо 𝑈
> 𝑈
0.1
.
Сравнение двух дисперсий нормальных
генеральных совокупностей
Задача сравнения дисперсий возникает, когда требуется срав-
нить различные методы сбора статистической информации. Оче-
видно, что предпочтительнее тот метод, который обеспечивает
наименьший разброс собранных данных, то есть наименьшую
дисперсию.
62