Теория вероятностей и математическая статистика. Ч.2. Фарафонов В.Г - 97 стр.

UptoLike

вероятности 𝑝
𝑗
найдём из формулы (94):
𝑛
𝑗
= 𝑛𝑝
𝑗
= 𝑛
(
Φ
0
(
𝑙
𝑗
¯𝑥
𝜎
)
Φ
0
(
𝑙
𝑗1
¯𝑥
𝜎
))
.
Тогда
𝑛
1
= 𝑛
(
Φ
0
(
2 5.914
11.1656
)
Φ
0
(
5.914
11.1656
))
=
= 50
(
Φ
0
(
2 5.914
3.34
)
Φ
0
(
5.914
3.34
))
= 50(Φ
0
(1.17)
Φ
0
(−∞)) = 50(0.3790 + 0.5000) = 50 0.121 = 6.05
𝑛
2
= 50
(
Φ
0
(
3 5.914
3.34
)
Φ
0
(
2 5.914
3.34
))
= 50(Φ
0
(0.87)
Φ
0
(1.17)) = 50(0.3078 + 0.3790) = 50 0.0712 = 3.56
𝑛
3
= 50
(
Φ
0
(
4 5.914
3.34
)
Φ
0
(
3 5.914
3.34
))
= 50(Φ
0
(0.57)
Φ
0
(0.87)) = 50(0.2157 + 0.3078) = 50 0.0921 = 4.61
𝑛
4
= 50
(
Φ
0
(
5 5.914
3.34
)
Φ
0
(
4 5.914
3.34
))
= 50(Φ
0
(0.27)
Φ
0
(0.57)) = 50(0.1064 + 0.2157) = 50 0.1093 = 5.47
𝑛
5
= 50
(
Φ
0
(
6 5.914
3.34
)
Φ
0
(
5 5.914
3.34
))
= 50(Φ
0
(0.086)
Φ
0
(0.27)) = 50(0.0359 + 0.1064) = 50 0.1423 = 7.12
𝑛
6
= 50
(
Φ
0
(
8 5.914
3.34
)
Φ
0
(
6 5.914
3.34
))
= 50(Φ
0
(0.62)
Φ
0
(0.086)) = 50(0.2324 0.0359) = 50 0.1965 = 9.83
𝑛
7
= 50
(
Φ
0
(
10 5.914
3.34
)
Φ
0
(
8 5.914
3.34
))
= 50(Φ
0
(1.22)
95