Ряды Фурье и основы вейвлет-анализа. Фарков Ю.А. - 31 стр.

UptoLike

Составители: 

f L
1
(R)
b
f(ξ) :=
Z
R
f(t)e
itξ
dt. (1)
f L
1
(R)
b
f(ξ) R
|ξ| +
f(t) =
1
2π
Z
R
b
f(ξ)e
itξ
. (2)
t = t
0
f t
0
δ
Z
δ
f(t
0
+ t) f(t
0
)
t
dt < + δ > 0.
Z
R
b
f(ξ)e
itξ
:= lim
N+
Z
N
N
b
f(ξ)e
itξ
.
f
b
f L
1
(R)
f
F : f 7→
b
f
e
ω
: t 7→ e
t
ω t
T
h
f(t) := f(t h)
D
a
f(t) := f(t/a) (a 6= 0)
(f g)(t) :=
R
R
f(t τ)g(τ ) f g
F(αf + βg) = αFf + βFg α, β C, f, g L
1
(R).
         Ãëàâà 2. Ïðåîáðàçîâàíèå Ôóðüå è îñíîâû
                     âåéâëåò-àíàëèçà


                        Ÿ 1. Ïðåîáðàçîâàíèå Ôóðüå
  Ïðåîáðàçîâàíèå Ôóðüå ïðîèçâîëüíîé ôóíêöèè f ∈ L1 (R) îïðåäåëÿåòñÿ
ðàâåíñòâîì                       Z
                        fb(ξ) :=   f (t)e−itξ dt.               (1)
                                         R
Ñîãëàñíî òåîðåìå Ðèìàíà  Ëåáåãà, äëÿ ëþáîé ôóíêöèè f ∈ L1 (R) ïðåîáðà-
çîâàíèå Ôóðüå fb(ξ) ÿâëÿåòñÿ îãðàíè÷åííîé è íåïðåðûâíîé íà R ôóíêöèåé,
êîòîðàÿ ñòðåìèòñÿ ê íóëþ ïðè | ξ| → +∞.
  Ôîðìóëà îáðàùåíèÿ ïðåîáðàçîâàíèÿ Ôóðüå èìååò âèä
                                         Z
                                     1
                            f (t) =              fb(ξ)eitξ dξ.            (2)
                                    2π       R

Äëÿ ñïðàâåäëèâîñòè ôîðìóëû (2) ïðè t = t0 äîñòàòî÷íî ïðåäïîëàãàòü, ÷òî
ôóíêöèÿ f â òî÷êå t0 óäîâëåòâîðÿåò óñëîâèþ Äèíè:
         Zδ
              f (t0 + t) − f (t0 )
                                   dt < +∞ äëÿ íåêîòîðîãî δ > 0.
                       t
         −δ

Ïðè ýòîì èíòåãðàë â ôîðìóëå (2) ïîíèìàåòñÿ â ñìûñëå ãëàâíîãî çíà÷åíèÿ,
ò.å.             Z                    Z N
                        fb(ξ)eitξ dξ := lim               fb(ξ)eitξ dξ.
                    R                    N →+∞       −N

Åñëè îáå ôóíêöèè f è fb ïðèíàäëåæàò L1 (R), òî ôîðìóëà (2) âåðíà âî âñåõ
òî÷êàõ íåïðåðûâíîñòè ôóíêöèè f .
  Áóäåì ïîëüçîâàòüñÿ ñëåäóþùèìè îáîçíà÷åíèÿìè:
       F : f 7→ fb  îïåðàòîð Ôóðüå,
       eω : t 7→ eiωt  ãàðìîíèêè ( ω  âåùåñòâåííûé ïàðàìåòð, t  âåùå-
ñòâåííàÿ ïåðåìåííàÿ ),
       Th f (t) := f (t − h)  îïåðàòîð ñäâèãà,
       Da f (t) := f (t/a)  îïåðàòîð ðàñòÿæåíèÿ (a 6= 0),
       (f ∗ g)(t) := R f (t − τ )g(τ ) dτ  ñâåðòêà ôóíêöèé f è g .
                       R

  Îïåðàòîð Ôóðüå ëèíååí:

         F(αf + βg) = αFf + βFg äëÿ α, β ∈ C, f, g ∈ L1 (R).


                                          31