ВУЗ:
Составители:
Рубрика:
f, g ∈ L
1
(R) f ∗ g ∈ L
1
(R) f ∗ g = g ∗ f
f, g ∈ L
1
(R) g R f ∗g R
f, g, h ∈ L
1
(R) (f ∗ g) ∗ h = f ∗ (g ∗ h)
f ∈ L
1
(R) t
0
∈ R
lim
α→0
(f ∗ g
α
)(t
0
) = f(t
0
),
g
α
f, g ∈ S(R)
f R
supp
b
f ⊂ [−b, b] a < b < 3a
X
k∈Z
f(kT ) sinc (a(t − kT ),
T = π/a g
bg(ξ) =
b
f(ξ) +
b
f(ξ − 2a) +
b
f(ξ + 2a) ξ ∈ [−a, a]
bg(ξ) = 0 ξ /∈ [−3a, 3a]
f ∈ L
2
(R)
lim
m→∞
k
b
f −
b
f
m
k = 0,
b
f
m
f
m
(t) =
f(t), |t| ≤ m,
0, |t| > m.
B {N
m
}
N
1
= χ
[0,1)
, N
m
= N
m−1
∗ N
1
m ≥ 2.
B N
1
N
2
N
3
b
N
m
(ξ) = e
−imξ/2
sin(ξ/2)
ξ/2
m
.
ϕ(t) =
t, 0 ≤ t < 1,
2 − t, 1 ≤ t < 2,
0, t ∈ R \ [0, 2)
X
k∈Z
|bϕ(ξ + 2πk)|
2
=
1
3
+
2
3
cos
2
ξ
2
.
4. Äîêàæèòå ñëåäóþùèå ñâîéñòâà:
1) åñëè f, g ∈ L1 (R), òî f ∗ g ∈ L1 (R) è f ∗ g = g ∗ f ;
2) åñëè f, g ∈ L1 (R) è g íåïðåðûâíà íà R, òî f ∗ g íåïðåðûâíà íà R;
3) åñëè f, g, h ∈ L1 (R), òî (f ∗ g) ∗ h = f ∗ (g ∗ h);
4) åñëè ôóíêöèÿ f ∈ L1 (R) íåïðåðûâíà â òî÷êå t0 ∈ R, òî
lim (f ∗ gα )(t0 ) = f (t0 ),
α→0
ãäå gα ãàóññîâû ôóíêöèè, îïðåäåëåííûå ïî ôîðìóëå (18).
5. Äîêàæèòå ïðàâèëà (Ï1) (Ï4) äëÿ ôóíêöèé f, g ∈ S(R).
6. Ïðåäïîëîæèì, ÷òî ôóíêöèÿ f íåïðåðûâíà íà R, óäîâëåòâîðÿåò óñëîâèþ
(8) è supp fb ⊂ [−b, b], ãäå a < b < 3a. Ïðîâåðüòå, ÷òî òîãäà êàðäèíàëüíûé
ðÿä X
f (kT ) sinc (a(t − kT ),
k∈Z
ãäå T = π/a, ñõîäèòñÿ ê çíà÷åíèÿì ôóíêöèè g , òàêîé, ÷òî
gb(ξ) = fb(ξ) + fb(ξ − 2a) + fb(ξ + 2a) äëÿ ξ ∈ [−a, a]
è gb(ξ) = 0 äëÿ ξ ∈
/ [−3a, 3a].
7. Ïóñòü f ∈ L2 (R). Äîêàæèòå, ÷òî
lim k fb − fbm k = 0,
m→∞
ãäå fbm ïðåîáðàçîâàíèÿ Ôóðüå ñðåç-ôóíêöèé
f (t), | t| ≤ m,
fm (t) =
0, | t| > m.
8. Ñèñòåìà íîðìàëèçîâàííûõ B -ñïëàéíîâ {Nm } îïðåäåëÿåòñÿ ôîðìóëàìè
N1 = χ[0,1) , Nm = Nm−1 ∗ N1 äëÿ m ≥ 2.
Ïîñòðîéòå ãðàôèêè B -ñïëàéíîâ N1 , N2 , N3 è äîêàæèòå ðàâåíñòâî
m
−imξ/2 sin(ξ/2)
N
bm (ξ) = e .
ξ/2
9. Ïîêàæèòå, ÷òî äëÿ ïðåîáðàçîâàíèÿ Ôóðüå ôóíêöèè
t,
0 ≤ t < 1,
ϕ(t) = 2 − t, 1 ≤ t < 2,
0, t ∈ R \ [0, 2)
âûïîëíåíî ðàâåíñòâî
X 1 2 ξ
b + 2πk)|2 = + cos2
|ϕ(ξ .
3 3 2
k∈Z
38
Страницы
- « первая
- ‹ предыдущая
- …
- 36
- 37
- 38
- 39
- 40
- …
- следующая ›
- последняя »
