Ряды Фурье и основы вейвлет-анализа. Фарков Ю.А. - 61 стр.

UptoLike

Составители: 

h
k
= c
k
/
2 g
k
= (1)
k
¯
h
1k
ϕ(t) =
2
X
lZ
h
l
ϕ(2t l) (16)
ψ(t) =
2
X
lZ
g
l
ϕ(2t l). (17)
j, k Z
2
(j1)/2
ϕ(2
j1
t k) = 2
j/2
X
lZ
h
l
ϕ(2
j
t (2k + l))
ϕ
j1,k
=
X
lZ
h
l
ϕ
j,2k+l
,
ϕ
j1,k
=
X
lZ
h
l2k
ϕ
j,l
. (18)
ψ
j1,k
=
X
lZ
g
l2k
ϕ
j,l
. (19)
a
j1,k
= (f, ϕ
j1,k
) =
X
lZ
¯
h
l2k
(f, ϕ
j,l
) =
X
lZ
¯
h
l2k
a
j,l
.
d
j1,k
= (f, ψ
j1,k
) =
X
lZ
¯g
l2k
(f, ϕ
j,l
) =
X
lZ
¯g
l2k
a
j,l
.
h
l2k
= (ϕ
j1,k
, ϕ
j,k
), g
l2k
= (ψ
j1,k
, ϕ
j,k
). (20)
f P
j
f V
j
a
j l
= (f, ϕ
j,l
) = (P
j
f, ϕ
j,l
) = (P
j1
f, ϕ
j,l
) + (Q
j1
f, ϕ
j,l
).
P
j1
Q
j1
a
j l
=
X
k
a
j1,k
(ϕ
j1,k
, ϕ
j,l
) +
X
k
d
j1,k
(ψ
j1,k
, ϕ
j,l
) =
   Äîêàçàòåëüñòâî. Ñîãëàñíî (4) è (9), äëÿ √ êîýôôèöèåíòîâ    â ôîðìóëàõ
(14) è (15) èìåþò ìåñòî ðàâåíñòâà hk = ck / 2, gk = (−1) h̄1−k . Ó÷èòûâàÿ
                                                        k

(3), èìååì ðàçëîæåíèÿ
                                       √ X
                              ϕ(t) =    2  hl ϕ(2t − l)                                     (16)
                                               l∈Z
è                                      √ X
                              ψ(t) =    2  gl ϕ(2t − l).                                    (17)
                                              l∈Z
Ïîëüçóÿñü (16), äëÿ ëþáûõ j, k ∈ Z èìååì
                                                     X
              2(j−1)/2 ϕ(2j−1 t − k) = 2j/2                 hl ϕ(2j t − (2k + l))
                                                      l∈Z
è, ñëåäîâàòåëüíî,                           X
                                ϕj−1,k =             hl ϕj,2k+l ,
                                               l∈Z
ò.å.                                        X
                                ϕj−1,k =             hl−2k ϕj,l .                           (18)
                                               l∈Z
Àíàëîãè÷íî èç (17) âûâîäèòñÿ ðàâåíñòâî
                                              X
                                 ψj−1,k =            gl−2k ϕj,l .                           (19)
                                               l∈Z

Ñîãëàñíî (18) èìååì
                                        X                             X
            aj−1,k = (f, ϕj−1,k ) =            h̄l−2k (f, ϕj,l ) =          h̄l−2k aj,l .
                                        l∈Z                           l∈Z

Àíàëîãè÷íî èç (19) âûâîäèì
                                        X                             X
            dj−1,k = (f, ψj−1,k ) =            ḡl−2k (f, ϕj,l ) =          ḡl−2k aj,l .
                                         l∈Z                          l∈Z

Òàêèì îáðàçîì, ôîðìóëû (14) äîêàçàíû.
  Äîêàæåì (15). Ñîãëàñíî (18) è (19)
                 hl−2k = (ϕj−1,k , ϕj,k ),           gl−2k = (ψj−1,k , ϕj,k ).              (20)
Ïîëüçóÿñü òåì, ÷òî ðàçíîñòü f − Pj f îðòîãîíàëüíà ïîäïðîñòðàíñòâó Vj , è
ïðèìåíÿÿ (3), èìååì
          aj l = (f, ϕj,l ) = (Pj f, ϕj,l ) = (Pj−1 f, ϕj,l ) + (Qj−1 f, ϕj,l ).
Ó÷èòûâàÿ (20), îòñþäà ïî îïðåäåëåíèþ îïåðàòîðîâ Pj−1 è Qj−1 ïîëó÷àåì
                     X                                 X
            aj l =       aj−1,k (ϕj−1,k , ϕj,l ) +           dj−1,k (ψj−1,k , ϕj,l ) =
                     k                                  k

                                               61