ВУЗ:
Составители:
Рубрика:
bϕ ∈ C
2
(R) 2π
Φ(ξ) :=
X
k∈Z
|bϕ(ξ + 2πk)|
2
Φ(ξ) =
|bϕ(ξ)|
2
+ |bϕ(ξ + 2π)|
2
, −4π/3 ≤ ξ ≤ −2π/3,
|bϕ(ξ)|
2
, |ξ| ≤ 2π/3,
|bϕ(ξ)|
2
+ |bϕ(ξ − 2π)|
2
, 2π/3 ≤ ξ ≤ 4π/3.
(5)
Φ(ξ) = 1 |ξ| ≤ 2π/3 2π/3 ≤
ξ ≤ 4π/3
3
2π
|ξ −2π| − 1 = 1 −
3
2π
ξ −1
Φ(ξ) = cos
2
π
2
ν
3
2π
ξ −1
+ sin
2
π
2
ν
3
2π
ξ −1
= 1.
Φ(ξ) = 1 −4π/3 ≤ ξ ≤ −2π/3
X
k∈Z
|bϕ(ξ + 2πk)|
2
= 1.
V
j
⊂ V
j+1
,
\
V
j
= {0},
[
V
j
= L
2
(R)
ψ
bϕ(ξ) = H(ξ/2)bϕ(ξ/2)
H(ξ) =
bϕ(2ξ), ξ ∈ [−2π/3, 2π/3],
0, ξ ∈ [−π, −2π/3] ∪ [2π/3, π].
ϕ =
X
k∈Z
h
k
ϕ
1k
, H(ξ) =
1
√
2
X
k∈Z
h
k
e
−ikξ
h
k
=
√
2
2π
π
Z
−π
H(ξ)e
ikξ
dξ =
√
2
π
2π/3
Z
0
bϕ(2ξ) cos kξ dξ.
Èç ôîðìóë (1) è (3) âèäíî, ÷òî ϕ
b ∈ C 2 (R). Êðîìå òîãî, äëÿ 2π -
ïåðèîäè÷åñêîé íåïðåðûâíîé ôóíêöèè
X
Φ(ξ) := b + 2πk)|2
|ϕ(ξ
k∈Z
èìååì
b 2 + |ϕ(ξ
|ϕ(ξ)| b + 2π)|2 , −4π/3 ≤ ξ ≤ −2π/3,
Φ(ξ) = b 2,
|ϕ(ξ)| | ξ| ≤ 2π/3, (5)
b 2 + |ϕ(ξ
|ϕ(ξ)| b − 2π)|2 , 2π/3 ≤ ξ ≤ 4π/3.
Ó÷èòûâàÿ (1) è (3), çàìå÷àåì, ÷òî Φ(ξ) = 1 ïðè | ξ| ≤ 2π/3. Ïóñòü 2π/3 ≤
ξ ≤ 4π/3. Òîãäà
3 3
| ξ − 2π| − 1 = 1 − ξ−1
2π 2π
è, â ñèëó (3) è (5),
π 3 π 3
Φ(ξ) = cos2 ν ξ−1 + sin2 ν ξ−1 = 1.
2 2π 2 2π
Àíàëîãè÷íî, Φ(ξ) = 1 ïðè −4π/3 ≤ ξ ≤ −2π/3. Òàêèì îáðàçîì, äëÿ ôóíêöèè
(3) âûïîëíåíî óñëîâèå îðòîíîðìèðîâàííîñòè:
X
b + 2πk)|2 = 1.
|ϕ(ξ
k∈Z
Ïîëüçóÿñü òåîðåìîé 1 è ïðåäëîæåíèåì 2, âèäèì, ÷òî ñâîéñòâà
\ [
Vj ⊂ Vj+1 , Vj = {0}, Vj = L2 (R)
òàêæå âûïîëíåíû.
Òàêèì îáðàçîì, ôóíêöèÿ (4) ÿâëÿåòñÿ ìàñøòàáèðóþùåé ôóíêöèåé. Ñîîò-
âåòñòâóþùèé âåéâëåò ψ áóäåì èñêàòü ñ ïîìîùüþ ôîðìóëû (4.34). Ïîëüçóÿñü
(3), èç ðàâåíñòâà
ϕ(ξ)
b = H(ξ/2)ϕ(ξ/2)
b
íàõîäèì
ϕ(2ξ), ξ ∈ [−2π/3, 2π/3],
H(ξ) =
b
0, ξ ∈ [−π, −2π/3] ∪ [2π/3, π].
Ñîîòâåòñòâåííî, êîýôôèöèåíòû ðàçëîæåíèé
X 1 X
ϕ= hk ϕ1k , è H(ξ) = √ hk e−ikξ
k∈Z
2 k∈Z
âû÷èñëÿþòñÿ ïî ôîðìóëå
√ Zπ √ 2π/3
Z
2 ikξ 2
hk = H(ξ)e dξ = ϕ(2ξ)
b cos kξ dξ.
2π π
−π 0
70
Страницы
- « первая
- ‹ предыдущая
- …
- 68
- 69
- 70
- 71
- 72
- …
- следующая ›
- последняя »
