ВУЗ:
Составители:
Рубрика:
B
B {N
m
(t)}
N
1
(t) = χ
[0,1)
(t), N
m
(t) =
t
m − 1
N
m−1
(t)+
m − t
m − 1
N
m−1
(t−1), m = 2, 3, . . . .
(1)
m = 2
N
2
(t) = t N
1
(t) + (2 − t) N
1
(t − 1)
N
2
(t) =
t, 0 ≤ t < 1,
2 − t, 1 ≤ t < 2,
0, t ∈ R \ [0, 2)
1
0
N
m
[k, k + 1] k = 0, 1, . . . , m − 1
m − 1
2
0
N
m
∈ C
m−2
(R) m ≥ 2
3
0
supp N
m
= [0, m] N
m
> 0 t ∈ (0, m)
4
0
N
m
(t) N
m
(2t − k) k = 0, 1, . . . , m
N
m
(t) = 2
−m+1
m
X
k=0
C
m
k
N
m
(2t − k), (2)
C
m
k
=
m!
k!(m − k)!
5
0
N
m
= N
1
∗ N
m−1
N
m
(t) =
Z
1
0
N
m−1
(t − τ) dτ
m ≥ 2
6
0
B
b
N
m
(ξ) = e
−imξ/2
sin(ξ/2)
ξ/2
m
.
5
0
6
0
9. Íîðìàëèçîâàííûå B -ñïëàéíû è âåéâëåòû Áàòëà-Ëåìàðüå
Ñèñòåìà íîðìàëèçîâàííûõ B -ñïëàéíîâ {Nm (t)} îïðåäåëÿåòñÿ ôîðìóëàìè
t m−t
N1 (t) = χ[0,1) (t), Nm (t) = Nm−1 (t)+ Nm−1 (t−1), m = 2, 3, . . . .
m−1 m−1
(1)
Èç ôîðìóëû (1) ïðè m = 2 ïîëó÷àåì
N2 (t) = t N1 (t) + (2 − t) N1 (t − 1)
è, ñëåäîâàòåëüíî,
t, 0 ≤ t < 1,
N2 (t) = 2 − t, 1 ≤ t < 2,
0, t ∈ R \ [0, 2)
Ñïðàâåäëèâû ñâîéñòâà:
10 . Nm íà êàæäîì îòðåçêå [k, k + 1], k = 0, 1, . . . , m − 1, ñîâïàäàåò ñ àëãå-
áðàè÷åñêèì ïîëèíîìîì ñòåïåíè m − 1.
20 . Nm ∈ C m−2 (R) äëÿ m ≥ 2.
30 . supp Nm = [0, m] è Nm > 0 äëÿ âñåõ t ∈ (0, m).
40 . Nm (t) âûðàæàåòñÿ ÷åðåç Nm (2t − k), k = 0, 1, . . . , m, ïî ôîðìóëå
m
X
−m+1
Nm (t) = 2 Ckm Nm (2t − k), (2)
k=0
ãäå
m!
Ckm =
k!(m − k)!
áèíîìèàëüíûå êîýôôèöèåíòû.
50 . Nm = N1 ∗ Nm−1 , ò.å.
Z 1
Nm (t) = Nm−1 (t − τ ) dτ
0
äëÿ m ≥ 2.
60 . Ïðåîáðàçîâàíèÿ Ôóðüå íîðìàëèçîâàííûõ B -ñïëàéíîâ íàõîäÿòñÿ ïî
ôîðìóëå m
bm (ξ) = e−imξ/2 sin(ξ/2)
N .
ξ/2
Îòìåòèì, ÷òî ñâîéñòâà 50 è 60 ïðèâîäèëèñü â óïðàæíåíèè 1.8. Èç ôîðìóëû
(2) èìååì, â ÷àñòíîñòè,
79
Страницы
- « первая
- ‹ предыдущая
- …
- 77
- 78
- 79
- 80
- 81
- …
- следующая ›
- последняя »
