Турбулентность: модели и подходы. Курс лекций. Часть I. Фрик П.Г. - 100 стр.

UptoLike

Составители: 

100
0=
kk
U . (3.20)
 óðàâíåíèå Ðåéíîëüäñà äëÿ ñðåäíèõ ïîëåé âõîäèò îäíîòî÷å÷íûé
êîððåëÿöèîííûé òåíçîð ïóëüñàöèé ñêîðîñòè, íàçûâàåìûé òåíçîðîì íà-
ïðÿæåíèé Ðåéíîëüäñà
jiij
uu=t . (3.21)
Ýòîò òåíçîð íåëüçÿ âûðàçèòü ÷åðåç îñðåäíåííûå õàðàêòåðèñòèêè òóð-
áóëåíòíûõ ïîëåé. Ñëåäîâàòåëüíî, ÷èñëî íåèçâåñòíûõ ïðåâûøàåò ÷èñëî
èìåþùèõñÿ óðàâíåíèé è ñèñòåìà (3.19)-(3.20) ÿâëÿåòñÿ íå çàìêíóòîé.
3.2.2 Öåïî÷êà óðàâíåíèé Ôðèäìàíàåëëåðà è ïðîáëåìà
çàìûêàíèÿ
 óðàâíåíèè Ðåéíîëüäñà ïîÿâèëàñü íîâàÿ íåèçâåñòíàÿ âåëè÷èíà - òåí-
çîð íàïðÿæåíèé Ðåéíîëüäñà (3.21), äëÿ êîòîðîãî òàêæå ìîæíî ïîëó÷èòü
ýâîëþöèîííîå óðàâíåíèå. Òàê êàê
itjjtijitijt
uuuuuu +== t ,
òî ñíà÷àëà òðåáóåòñÿ ïîëó÷èòü óðàâíåíèå äëÿ ïóëüñàöèé ñêîðîñòè,
äëÿ ÷åãî èç óðàâíåíèÿ (3.17) íåîáõîäèìî âû÷åñòü óðàâíåíèå (3.19). Ïîëó÷èì
åìûå èíäåêñû
j
çàìåíåíû íà k )
iikkkikiikkikkikkit
fuuupuuUuuUu
¢
++-
¢
-=+++
- 21
nr . (3.22)
Àíàëîãè÷íîå óðàâíåíèå ïîëó÷àåòñÿ è äëÿ êîìïîíåíòû
j
u :
jjkkkjkjjkkjkkjkkjt
fuuupuuUuuUu
¢
++-
¢
-=+++
- 21
nr . (3.23)
Óðàâíåíèå (3.22) óìíîæàåòñÿ íà
j
u è ñêëàäûâàåòñÿ ñ óðàâíåíèåì
(3.23), óìíîæåííûì íà
i
u :
ijjiikkjjkkijiji
kikjkjkikjkikikjjkkiikkjjikk
itjjti
fufuuuuupupu
uuuuuuuuuuuuUuuUuuuuU
uuuu
¢
+
¢
++-
¢
+
¢
-
-------
=+
-
)()(
)()()(
221
nr
100



      ¶k U k = 0 .                                                                 (3.20)

      óðàâíåíèå Ðåéíîëüäñà äëÿ ñðåäíèõ ïîëåé âõîäèò îäíîòî÷å÷íûé
êîððåëÿöèîííûé òåíçîð ïóëüñàöèé ñêîðîñòè, íàçûâàåìûé òåíçîðîì íà-
ïðÿæåíèé Ðåéíîëüäñà

      t ij = u i u j .                                                             (3.21)

     Ýòîò òåíçîð íåëüçÿ âûðàçèòü ÷åðåç îñðåäíåííûå õàðàêòåðèñòèêè òóð-
áóëåíòíûõ ïîëåé. Ñëåäîâàòåëüíî, ÷èñëî íåèçâåñòíûõ ïðåâûøàåò ÷èñëî
èìåþ ù èõñÿ óðàâíåíèé è ñèñòåìà (3.19)-(3.20) ÿâëÿåòñÿíå çàìêíóòîé.


           3.2.2 Ö åïî÷êà óðàâíåíèé Ô ðèäìàíà-Êåëëåðà è ïðîáëåìà
                 çàìûêàíèÿ
      óðàâíåíèè Ðåéíîëüäñà ïîÿâèëàñü íîâàÿ íåèçâåñòíàÿ âåëè÷èíà - òåí-
çîð íàïðÿæåíèé Ðåéíîëüäñà (3.21), äëÿ êîòîðîãî òàêæå ìîæíî ïîëó÷èòü
ýâîëþ öèîííîåóðàâíåíèå. Òàê êàê

      ¶tt ij = ¶t u i u j = u i ¶t u j + u j ¶t u i ,


      òî ñíà÷àëà òðåáóåòñÿ ïîëó÷èòü óðàâíåíèå äëÿ ïóëüñàöèé ñêîðîñòè,
äëÿ ÷åãî èç óðàâíåíèÿ (3.17) íåîáõîäèìî âû÷åñòü óðàâíåíèå (3.19). Ï îëó÷èì
(íåìûå èíäåêñû j çàìåíåíû íà k )

      ¶t u i + U k ¶k u i + u k ¶k U i + u k ¶k u i = - r - 1¶i p ¢- ¶k u i u k + n¶2kk u i + f i¢.               (3.22)

      Àíàëîãè÷íîå óðàâíåíèå ïîëó÷àåòñÿ è äëÿ êîìïîíåíòû u j :

      ¶t u j + U k ¶k u j + u k ¶k U j + u k ¶k u j = - r - 1¶ j p ¢- ¶k u j u k + n¶2kk u j + f j¢.               (3.23)

      Óðàâíåíèå (3.22) óìíîæàåòñÿ íà u j è ñêëàäûâàåòñÿ ñ óðàâíåíèåì
(3.23), óìíîæåííûì íà u i :

      u i ¶t u j + u j ¶t u i =
      - U k ¶k (u i u j ) - u j u k ¶k U i - u i u k ¶k U j - u j ¶k (u i u k ) - u i ¶k (u j u k ) - u i ¶k u j u k - u j ¶k u i u k
      - r - 1 (u i ¶ j p ¢+ u i ¶ j p ¢) - n (u i ¶kk
                                                   2
                                                      u j + u j ¶2kk u i ) + u i f j¢+ u j f i¢