Функция нескольких переменных. - 3 стр.

UptoLike

Рубрика: 

§3. þÁÓÔÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ× 3
òÅÛÅÎÉÅ.
z
0
x
= (x
2
+ y
2
)
0
x
e
xy
+ (x
2
+ y
2
)(e
xy
)
0
x
=
= 2xe
xy
+ (x
2
+ y
2
)e
xy
y = (2x + x
2
y + y
3
)e
xy
z
0
y
= (x
2
+ y
2
)
0
y
e
xy
+ (x
2
+ y
2
)(e
xy
)
0
y
=
= 2ye
xy
+ (x
2
+ y
2
)e
xy
x = (2y + x
3
+ xy
2
)e
xy
.
§3. þÁÓÔÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ×
ïÐÒÅÄÅÌÅÎÉÅ. þÁÓÔÎÙÍÉ ÐÒÏÉÚ×ÏÄÎÙÍÉ ×ÔÏÒÏÇÏ ÐÏÒÑÄËÁ ÎÁÚÙ×ÁÀÔÓÑ
ÞÁÓÔÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ ÏÔ ÞÁÓÔÎÙÈ ÐÒÏÉÚ×ÏÄÎÙÈ. ïÂÏÚÎÁÞÅÎÉÑ:
(z
0
x
)
0
x
= z
00
xx
= f
00
xx
(x, y) =
2
f
x
2
=
2
z
x
2
(z
0
x
)
0
y
= z
00
xy
= f
00
xy
(x, y) =
2
f
x∂y
=
2
z
x∂y
(z
0
y
)
0
x
= z
00
yx
= f
00
yx
(x, y) =
2
f
yx
=
2
z
yx
(z
0
y
)
0
y
= z
00
yy
= f
00
yy
(x, y) =
2
f
y
2
=
2
z
y
2
.
òÁÓÐÏÌÏÖÅÎÉÅ ÓÉÍ×ÏÌÏ× x É y ÉÌÉ x, y ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÐÏÒÑÄËÕ ÄÉÆÆÅÒÅÎ-
ÃÉÒÏ×ÁÎÉÑ. ðÒÏÉÚ×ÏÄÎÙÅ ÔÒÅÔØÅÇÏ ÐÏÒÑÄËÁ ÏÂÏÚÎÁÞÁÀÔÓÑ ÔÁË:
(z
00
xx
)
0
x
= z
000
xxx
=
3
f
x
3
(z
00
yx
)
0
y
= z
000
yxy
=
3
f
yx∂y
É Ô. Ä.
ðÒÉÍÅÒ 1. îÁÊÔÉ ×ÓÅ ×ÔÏÒÙÅ ÞÁÓÔÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ ÆÕÎËÃÉÉ z = sin(xy).
§3. þÁÓÔÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ×                                                        3

  òÅÛÅÎÉÅ.



 zx0 = (x2 + y 2 )0x exy + (x2 + y 2 )(exy )0x =
                                           = 2xexy + (x2 + y 2 )exy y = (2x + x2y + y 3 )exy
 zy0 = (x2 + y 2 )0y exy + (x2 + y 2 )(exy )0y =
                                        = 2yexy + (x2 + y 2 )exy x = (2y + x3 + xy 2 )exy .



§3. þÁÓÔÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ×

   ïÐÒÅÄÅÌÅÎÉÅ. þÁÓÔÎÙÍÉ ÐÒÏÉÚ×ÏÄÎÙÍÉ ×ÔÏÒÏÇÏ ÐÏÒÑÄËÁ ÎÁÚÙ×ÁÀÔÓÑ
ÞÁÓÔÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ ÏÔ ÞÁÓÔÎÙÈ ÐÒÏÉÚ×ÏÄÎÙÈ. ïÂÏÚÎÁÞÅÎÉÑ:

                                                             ∂ 2f   ∂ 2z
                         (zx0 )0x =   00
                                     zxx   =   00
                                              fxx (x, y)  =       = 2
                                                             ∂x2    ∂x
                                                              2
                          0 0       00       00             ∂ f      ∂ 2z
                       (zx )y = zxy = fxy (x, y) =                =
                                                           ∂x∂y     ∂x∂y
                                                            ∂ 2f     ∂ 2z
                       (zy0 )0x = zyx
                                    00       00
                                          = fyx  (x, y) =         =
                                                           ∂y∂x ∂y∂x
                                                            ∂ 2f    ∂ 2z
                         (zy0 )0y = zyy00
                                           = fyy00
                                                   (x, y) = 2 = 2 .
                                                            ∂y      ∂y

òÁÓÐÏÌÏÖÅÎÉÅ ÓÉÍ×ÏÌÏ× x É y ÉÌÉ ∂x, ∂y ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÐÏÒÑÄËÕ ÄÉÆÆÅÒÅÎ-
ÃÉÒÏ×ÁÎÉÑ. ðÒÏÉÚ×ÏÄÎÙÅ ÔÒÅÔØÅÇÏ ÐÏÒÑÄËÁ ÏÂÏÚÎÁÞÁÀÔÓÑ ÔÁË:



                                        00 0         000  ∂ 3f
                                      (zxx )x   =   zxxx=
                                                          ∂x3
                                      00 0     000        ∂ 3f
                                    (zyx )y = zyxy    =
                                                        ∂y∂x∂y

É Ô. Ä.
   ðÒÉÍÅÒ 1. îÁÊÔÉ ×ÓÅ ×ÔÏÒÙÅ ÞÁÓÔÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ ÆÕÎËÃÉÉ z = sin(xy).