ВУЗ:
Составители:
59
цессов (ТП) можно классифицировать по разным признакам. Одна из возможных
классификаций моделей ОУ (ТП) следующая:
1.
одномерные - многомерные;
2. во временной области - в частотной области;
3. стационарные - нестационарные;
4. непрерывные - дискретные;
5. статические - динамические;
6. линейные по переменным - нелинейные по переменным;
7. детерминированные - стохастические;
8. с сосредоточенными параметрами - с распределенными параметрами.
Схема одномерного ОУ(ТП) приведена на рисунке 4.2
z(t)
x(t) ОУ(ТП) y(t)
4.2.
Здесь x(t) - входной сигнал; y(t) - выходной сигнал; z(t) - возмущающее воздей-
ствие, действующее на ОУ(ТП).
Схема многомерного ОУ(ТП) приведена на рис. 4.3.
z
1
(t) ...........….. z
l
(t)
x
1
(t) y
1
(t)
. .
. .
. ОУ(ТП) .
x
n
(t) y
m
(t)
Рис.4.3
Введем обозначения
x
1
(t) y
1
(t) z
1
(t)
. . .
X(t) = . ; Y(t) = . ; Z(t) = . . (4.1)
. . .
x
n(t) ym(t) z
l
(t)
Здесь X(t) - вектор входных переменных (входной вектор). Пример входных пе-
ременных: свойства сырья (химический состав), размеры, механические свойства,
скорость подачи, стоимость). Вектор Y(t) есть вектор выходных переменных. При-
мер выходных переменных: характеристики полученного продукта или полуфабри-
ката (химический состав, размеры, количество, стоимость). Вектор Z(t) есть вектор
цессов (ТП) можно классифицировать по разным признакам. Одна из возможных
классификаций моделей ОУ (ТП) следующая:
1. одномерные - многомерные;
2. во временной области - в частотной области;
3. стационарные - нестационарные;
4. непрерывные - дискретные;
5. статические - динамические;
6. линейные по переменным - нелинейные по переменным;
7. детерминированные - стохастические;
8. с сосредоточенными параметрами - с распределенными параметрами.
Схема одномерного ОУ(ТП) приведена на рисунке 4.2
z(t)
x(t) ОУ(ТП) y(t)
4.2.
Здесь x(t) - входной сигнал; y(t) - выходной сигнал; z(t) - возмущающее воздей-
ствие, действующее на ОУ(ТП).
Схема многомерного ОУ(ТП) приведена на рис. 4.3.
z1(t) ...........….. zl(t)
x1(t) y1(t)
. .
. .
. ОУ(ТП) .
xn(t) ym(t)
Рис.4.3
Введем обозначения
x1(t) y1(t) z1(t)
. . .
X(t) = . ; Y(t) = . ; Z(t) = . . (4.1)
. . .
xn(t) ym(t) zl(t)
Здесь X(t) - вектор входных переменных (входной вектор). Пример входных пе-
ременных: свойства сырья (химический состав), размеры, механические свойства,
скорость подачи, стоимость). Вектор Y(t) есть вектор выходных переменных. При-
мер выходных переменных: характеристики полученного продукта или полуфабри-
ката (химический состав, размеры, количество, стоимость). Вектор Z(t) есть вектор
59
Страницы
- « первая
- ‹ предыдущая
- …
- 57
- 58
- 59
- 60
- 61
- …
- следующая ›
- последняя »
