Оценка надежности классифицирующих алгоритмов. Гуров С.И. - 30 стр.

UptoLike

Составители: 

α = 0.1; 0.05 m = 10, . . . , 1000
ˆp
p
= p
w
ˆp
p
w
ˆp J(0, p
+
)
p
+
1 η ˆp = 0
J
N
J
η θ
J
θ J
N
, θ 6= θ
J
N
θ
θ
, θ
+
J
N
= (θ
, θ
+
) η = 2P 1 0.5 6 P < 1
θ
G(T, θ) =
(
1 P ,
P .
G(T, θ) T
θ
T
θ
, θ
+
T = m
w
, θ = p (0, 1) G(m
w
, p) Bi (m, p)
G( m
w
, p ) = P{m
w
6 t |m, p}.
   Äëÿ áûñòðîãî ïðèáëèæ¼ííîãî ðåøåíèÿ óðàâíåíèé (39) ñî çíà÷åíèÿìè äîñòîâåðíîñòè
α = 0.1; 0.05 è îáú¼ìîâ âûáîðêè m = 10, . . . , 1000 ïîñòðîåíû ãðàôè÷åñêèå çàâèñèìîñòè
ìåæäó íàáëþäàåìûìè çíà÷åíèÿìè p̂ è îòíîñèòåëüíûìè ÷àñòîòàìè ãåíåðàëüíîé
ñîâîêóïíîñòè, îïðåäåëÿþùèìè äîâåðèòåëüíûé èíòåðâàë (ñì. íàïðèìåð, [21], [28], [53]).
Ïðåäñòàâëÿåòñÿ, ÷òî òî÷íîñòü äàííîãî ãðàôè÷åñêîãî ìåòîäà â áîëüøèíñòâå ñëó÷àåâ
äîñòàòî÷íà äëÿ çàäà÷ îöåíêè íàäåæíîñòè àëãîðèòìîâ ðàñïîçíàâàíèÿ îáðàçîâ. Ñëåäóåò
òîëüêî èìåòü â âèäó, ÷òî íà óêàçàííûõ ãðàôèêàõ íå ó÷ò¼í îñîáûé ñëó÷àé 0-ñîáûòèÿ, êîãäà
íóæíî ïîëüçîâàòüñÿ ôîðìóëîé (37).
   Ñêàæåì çäåñü, ÷òî ñ íàøåé òî÷êè çðåíèÿ ïðèìåíåíèå öåíòðàëüíûõ èíòåðâàëîâ äëÿ
îöåíêè âåðîÿòíîñòè îøèáêè p∗ = p∗w àëãîðèòìà ðàñïîçíàâàíèÿ, âîîáùå ãîâîðÿ, íå ÿâëÿåòñÿ
îïðàâäàííûì. Äåéñòâèòåëüíî, îøèáêà p̂, êàê ïðàâèëî, ìàëà (à äëÿ êîððåêòíûõ àëãîðèòìîâ
âîîáùå ðàâíà íóëþ), è ìû õîòèì áûòü óâåðåíû, ÷òî å¼ âåëè÷èíà íå ïðåâçîéäåò íåêîòîðîãî
çíà÷åíèÿ. Ïîýòîìó îøèáèòüñÿ ìû èìååì ïðàâî ñêîðåå â áîëüøóþ ñòîðîíó.  ñèëó ýòîãî
äëÿ îöåíêè p∗w áîëåå àäåêâàòíûì ïðåäñòàâëÿåòñÿ èñïîëüçîâàíèå íåöåíòðàëüíûõ, à äëÿ
äîñòàòî÷íî ìàëûõ çíà÷åíèé p̂ è îäíîñòîðîííèõ èíòåðâàëîâ J(0, p+ ).  ïîñëåäíåì ñëó÷àå â
êà÷åñòâå p+ áåðåòñÿ ñîîòâåòñòâóþùàÿ âåëè÷èíà èç (40), îïðåäåë¼ííàÿ äëÿ äîâåðèòåëüíîé
âåðîÿòíîñòè 1 − η . Çàìåòèì, ÷òî ïðè p̂ = 0 ïîëó÷åííàÿ îöåíêà ñîâïàä¼ò ñ (37).

6.1.1.2 Íàèáîëåå ñåëåêòèâíûå èíòåðâàëû. Äæ. Íåéìàí ïðåäëîæèë ìåòîä
ïîñòðîåíèÿ äîâåðèòåëüíûõ èíòåðâàëîâ, êîòîðûå òàêæå íàçâàë ¾êðàò÷àéøèìè¿ [67],
[37].  òîæå âðåìÿ îíè ïîñòðîåíû íà ñîâåðøåííî èíîé èäåå. ×òîáû îòëè÷àòü èõ
îò ðàññìîòðåííûõ êðàò÷àéøèõ äîâåðèòåëüíûõ èíòåðâàëîâ, íåéìàíîâñêèå èíòåðâàëû
JN â [25] ïðåäëîæåíî íàçûâàòü íàèáîëåå ñåëåêòèâíûìè (òàì æå ñì. îáñóæäåíèå
ðàçëè÷èé ìåæäó êðàò÷àéøèìè äîâåðèòåëüíûìè è íàèáîëåå ñåëåêòèâíûìè èíòåðâàëàìè).
Ïîñëåäíèå, â îòëè÷èå îò ðàíåå ðàññìîòðåííûõ êðàò÷àéøèõ äîâåðèòåëüíûõ èíòåðâàëîâ J
ñ äàííîé äîñòîâåðíîñòüþ η ìèíèìèçèðóþò íå ñâîþ äëèíó â óñëîâèè θ∗ ∈ J , à âåðîÿòíîñòü
θ ∈ JN , θ 6= θ∗ .  ñèëó ýòîãî ÿñíî, ÷òî îíè íå îáÿçàòåëüíî ÿâëÿþòñÿ êðàò÷àéøèìè â
ïðÿìîì ñìûñëå ýòîãî ñëîâà. Îäíàêî îêàçàëîñü, ÷òî ¾ñåëåêòèâíûé¿ ïîäõîä, ñâÿçàííûé ñ
æåëàíèåì èñêëþ÷èòü èç èíòåðâàëà JN êàê ìîæíî áîëüøå ëîæíûõ çíà÷åíèé θ, òàê ÷òîáû
îøèáêà ïðèíÿòèÿ íåâåðíîãî çíà÷åíèÿ áûëà áû ìèíèìàëüíîé, îêàçàëñÿ â îáùåì ñëó÷àå
çíà÷èòåëüíî áîëåå ïðîñòûì è óäîáíûì. Êðîìå òîãî, èìåííî òàêîé ïîäõîä èñïîëüçóåòñÿ â
òåîðèè ïðîâåðêè ñòàòèñòè÷åñêèõ ãèïîòåç (ãäå óêàçàííàÿ âûøå îøèáêà ÿâëÿåòñÿ îøèáêîé
âòîðîãî ðîäà ).
    Íàèáîëåå ñåëåêòèâíûå èíòåðâàëû ðàññìîòðåíû ïîäðîáíî â [30]. Òàì æå îïèñàí ìåòîä
èõ ïîñòðîåíèÿ, îñíîâàííûé íà ëåììå Íåéìàíà-Ïèðñîíà.
    Ñîãëàñíî íåéìàíîâñêîìó ìåòîäó ãðàíèöû θ− , θ+ äîâåðèòåëüíîãî èíòåðâàëà
JN = (θ− , θ+ ) ñ êîýôôèöèåíòîì äîâåðèÿ η = 2P − 1, ãäå 0.5 6 P < 1 äëÿ íåèçâåñòíîé
âåëè÷èíû θ∗ îïðåäåëÿþòñÿ êàê ðåøåíèÿ ñîîòâåòñòâåííî ïåðâîãî è âòîðîãî óðàâíåíèé
                                            (
                                              1−P ,
                                  G(T, θ) =                                      (41)
                                              P.
    Çäåñü G(T, θ)  íåïðåðûâíàÿ ôóíêöèÿ ðàñïðåäåëåíèÿ ñòàòèñòèêè T , èñïîëüçóåìîé
â êà÷åñòâå òî÷å÷íîé îöåíêè θ∗ è íàçûâàåìàÿ (íåéìàíîâñêèì) äîâåðèòåëüíûì
ðàñïðåäåëåíèåì T . Ïðè óñëîâèè âûïîëíåíèÿ íåêîòîðûõ óñëîâèé ðåãóëÿðíîñòè [67], [30], [8],
êîòîðûå âûïîëíÿþòñÿ ïî÷òè âî âñåõ èíòåðåñíûõ äëÿ ïðàêòèêè ñëó÷àÿõ, âûøåïðèâåä¼ííûå
óðàâíåíèÿ èìåþò åäèíñòâåííûå ðåøåíèÿ θ− , θ+ .
     íàøåì ñëó÷àå T = mw , θ = p ∈ (0, 1) è G(mw , p)  ôóíêöèÿ ðàñïðåäåëåíèÿ Bi (m, p)
â (28)
                             G( mw , p ) = P{mw 6 t | m, p} .