Уравнения математической физики. Уравнение колебаний струны. Хуснутдинов Н.Р. - 6 стр.

UptoLike

Составители: 

α
n
β
n
(n = 0, 1, 2, 3, . . .)
α
n
=
2
l
Z
l
0
f(x) cos(
πnx
l
)dx,
β
n
=
2
vπ
Z
l
0
F (x) cos(
πnx
l
)dx.
l
x = 0 x = l
f(x) = u(x, 0) =
x
2
h
, 0 x
l
4
(x
l
2
)
2
h
,
l
4
x
l
2
0,
l
2
x l
,
F (x) = u
t
(x, 0) = 0.
α
n
=
2
l
Z
l/4
0
x
2
h
cos(
πnx
l
)dx +
2
l
Z
l/2
l/4
(x
l
2
)
2
h
cos(
πnx
l
)dx
=
8l
2
3
n
3
cos(
πn
4
)
n
πn
4
sin(
πn
4
)
o
,
α
0
=
l
2
48h
,
β
n
=
2
vπ
Z
l
0
F (x) cos(
πnx
l
)dx = 0.
u(x, t) =
l
2
96h
+
8l
2
3
X
n=1
1
n
3
cos(
πn
4
)
n
πn
4
sin(
πn
4
)
o
0.25 0.5 0.75 1
x
- 1
1
2
u
t= 0 cek
0.25 0.5 0.75 1
x
- 1
1
2
u
t= 0.05 cek
0.25 0.5 0.75 1
x
- 1
1
2
u
t= 0.1 cek
0.25 0.5 0.75 1
x
- 1
1
2
u
t= 0.15 cek
0.25 0.5 0.75 1
x
- 1
1
2
u
t= 0.2 cek
0.25 0.5 0.75 1
x
- 1
1
2
u
t= 0.25 cek
0.25 0.5 0.75 1
x
- 1
1
2
u
0.25 0.5 0.75 1
x
- 1
1
2
u
t= 0.35 cek
0.25 0.5 0.75 1
x
- 1
1
2
u
t= 0.4 cek
0.25 0.5 0.75 1
x
- 1
1
2
u
t= 0.45 cek
0.25 0.5 0.75 1
x
- 1
1
2
u
t= 0.5 cek
v = 2 / , l = 1 , h = (4 π)
3
× cos(ω
n
t) cos(
πnx
l
).
t
t = 1
ν = 1
                                                                                      u                                     u                                       u
ãäå αn è βn íàõîäÿòñÿ êàê êîýèöèåíòû ðàçëîæåíèÿ â ðÿä Ôóðüå
ïî êîñèíóñàì (n = 0, 1, 2, 3, . . .)
                                                                                     2                                      2                                       2

                                                                                     1                                      1                                       1
                                             l
                                  2                         πnx
                                      Z
                                                                                                                       x                                       x                                     x
                       αn   =                    f (x) cos(     )dx,       (12a)          0.25   0.5     0.75      1            0.25     0.5     0.75      1            0.25   0.5     0.75      1
                                  l      0                   l                      -1                  t=0 cek            -1                  t=0.05 cek          -1                t=0.1 cek
                                                 l                                    u                                     u                                       u
                                   2                            πnx
                                          Z
                       βn   =                        F (x) cos(     )dx.   (12b)     2                                      2                                       2
                                  vπ         0                   l
                                                                                     1                                      1                                       1

   Ïðèìåð 2. àññìîòðèì ñòðóíó äëèíîé l , êàñàòåëüíàÿ ê êîòî-                                                          x                                       x                                     x
                                                                                          0.25   0.5     0.75      1            0.25     0.5     0.75      1            0.25   0.5     0.75      1
ðîé â òî÷êàõ x = 0 è x = l ðàâíà íóëþ, è ðàññìîòðèì ñëåäóþùèå                       -1                 t=0.15 cek          -1                  t=0.2 cek           -1                t=0.25 cek
íà÷àëüíûå óñëîâèÿ:                                                                    u                                     u                                       u
                                                                                    2                                      2                                       2
                                  x2
                             
                                  h ,2   0 ≤ x ≤ 4l                                 1                                      1                                       1
                                    l
           f (x) = u(x, 0) =    (x− 2 )
                                   h    , 4l ≤ x ≤ 2l ,                                   0.25   0.5     0.75      1
                                                                                                                     x          0.25     0.5     0.75      1
                                                                                                                                                             x          0.25   0.5     0.75      1
                                                                                                                                                                                                     x
                                            l
                             
                                   0,      2 ≤x ≤l
                             
                                                                                    -1                 t=0.3 cek           -1                  t=0.35 cek          -1                t=0.4 cek
                                                                                      u                                     u
             F (x)      =   u′t (x, 0)    = 0.
                                                                                     2                                      2

Íà÷àëüíûå óñëîâèÿ äîëæíû áûòü òàêèìè, ÷òîáû êàñàòåëüíàÿ íà                           1                                      1

êîíöàõ ñòðóíû áûëà ðàâíà íóëþ è â íà÷àëüíûé ìîìåíò âðåìåíè.                               0.25   0.5     0.75      1
                                                                                                                       x                                       x
                                                                                                                                0.25     0.5     0.75      1
Íà÷àëüíàÿ îðìà ñòðóíû èçîáðàæåíà íà èñ. 3. Ïî îðìóëàì (12)                       -1                 t=0.45 cek          -1                  t=0.5 cek
ïîëó÷àåì:
                                                                                   èñ. 4: Íà ðèñóíêàõ èçîáðàæåíà îðìà ñòðóíû â ðàçëè÷íûå ìîìåíòû âðåìåíè.
              2       l/4
                       x2      πnx          2 l/2 (x − 2l )2      πnx
                  Z                           Z
                                                                                   Êîíöû ñòðóíû ñâîáîäíî äâèæóòñÿ, ïðè÷åì óãîë íàêëîíà êîíöîâ ñòðóíû ðàâåí
   αn    =                cos(       )dx +                   cos(     )dx          íóëþ âî âñå ìîìåíòû âðåìåíè; âíåøíèå ñèëû îòñóòñòâóþò. Âûáðàíû ñëåäóþùèå
              l   0    h         l          l   l/4   h            l
                                                                                   çíà÷åíèÿ ïàðàìåòðîâ:         v = 2ì/ñåê, l = 1ì, h = (4 − π)/π 3 ì.
                8l2        πn n πn            πn o
         =            cos(    )        − sin(     ) ,
              hπ 3 n3       4      4           4                                                                                       πnx
               l2                                                                                      ×        cos(ωn t) cos(             ).
   α0    =         ,                                                                                                                    l
              48h
                  Z l                                                              Íà ðèñóíêå 4 èçîáðàæåíî äâèæåíèå ñòðóíû â òå÷åíèè ïîëóïåðèî-
               2                 πnx
   βn    =            F (x) cos(       )dx = 0.                                    äà. Ïðè äàëüíåéøåì óâåëè÷åíèè t îðìà ñòðóíû áóäåò ìåíÿòüñÿ â
              vπ 0                 l                                               îáðàòíîì ïîðÿäêå, è â ìîìåíò t = 1ñåê ñòðóíà âåðíåòñÿ â èñõîäíîå
Òàêèì îáðàçîì, ïîäñòàâëÿÿ ïîëó÷åííûå âûðàæåíèÿ â (11), ïîëó÷àåì                    ïîëîæåíèå. Ëèíåéíàÿ ÷àñòîòà êîëåáàíèé òàêîé ñòðóíû ν = 1 ö.
çàêîí êîëåáàíèÿ ñòðóíû ñ òàêèìè íà÷àëüíûìè äàííûìè                                    Èç ðèñóíêà âèäíî, ÷òî óãîë íàêëîíà êàñàòåëüíîé íà êîíöàõ ñòðó-
                                                                                   íû ðàâåí íóëþ âî âñå ìîìåíòû âðåìåíè. Âèä êîëåáàíèé ñòðóíû ñ
                         l2
                                  ∞
                              8l2 X 1        πn n πn        πn o                   òàêèìè ãðàíè÷íûìè óñëîâèÿìè îòëè÷àåòñÿ îò êîëåáàíèé ñòðóíû ñ
        u(x, t) =           +           cos(    )    − sin(    )                   çàêðåïëåííûìè êîíöàìè. Ñòðóíà â ïðîöåññå êîëåáàíèé âñåãäà îñòà-
                        96h hπ 3 n=1 n3       4    4         4


                                           11                                                                                    12