ВУЗ:
Составители:
Рубрика:
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.1 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.2 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.3 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.4 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.5 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.6 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.7 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.8 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.9 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 1 cek
v = 2 / , l = 1 , h =
(4 − π)/π
3
α
n
=
2
l
Z
l/4
0
x
2
h
sin
πx
l
(n +
1
2
)
dx
+
2
l
Z
l/2
l/4
(x −
l
2
)
2
h
sin
πx
l
(n +
1
2
)
dx
=
8l
2
hπ
3
(n +
1
2
)
3
π
4
(n +
1
2
) − sin
π
4
(n +
1
2
)
sin
π
4
(n +
1
2
)
,
β
n
=
2
vπ
Z
l
0
F (x) sin(
πnx
l
)dx = 0.
u(x, t) =
8l
2
hπ
3
∞
X
n=0
sin
π
4
(n +
1
2
)
(n +
1
2
)
3
π
4
(n +
1
2
) − sin
π
4
(n +
1
2
)
× cos(ω
n+
1
2
t) sin
πx
l
(n +
1
2
)
.
t
t = 2
ν = 1/2
∂
2
u
∂t
2
− v
2
∂
2
u
∂x
2
= G
sin(
πnx
l
)
G(x, t) =
∞
X
n=1
γ
n
(t) sin(
πnx
l
),
γ
n
(t) =
2
l
Z
l
0
G(x, t) sin(
πnx
l
)dx,
u(x, t) =
∞
X
n=1
c
n
(t) sin(
πnx
l
)
u u u l 2 πnx Z 3 3 3 2 t=0 cek 2 t=0.1 cek 2 t=0.2 cek βn = F (x) sin( )dx = 0. 1 1 1 vπ 0 l x x x -1 0.25 0.5 0.75 1 -1 0.25 0.5 0.75 1 -1 0.25 0.5 0.75 1 Òàêèì îáðàçîì, ïîäñòàâëÿÿ ïîëó÷åííûå âûðàæåíèÿ â (11), ïîëó÷àåì -2 -2 -2 çàêîí êîëåáàíèÿ ñòðóíû ñ òàêèìè íà÷àëüíûìè äàííûìè -3 -3 -3 u u u 8l2 X sin π4 (n + 21 ) ∞ 3 t=0.3 cek 3 t=0.4 cek 3 t=0.5 cek π 1 π 1 2 2 2 u(x, t) = (n + ) − sin (n + ) 1 1 1 hπ 3 n=0 (n + 12 )3 4 2 4 2 0.25 0.5 0.75 1 x 0.25 0.5 0.75 1 x 0.25 0.5 0.75 1 x -1 -1 -1 πx 1 -2 -2 -2 × cos(ωn+ 21 t) sin (n + ) . -3 -3 -3 l 2 u u u 3 2 t=0.6 cek 3 2 t=0.7 cek 3 2 t=0.8 cek Íà ðèñóíêå 5 èçîáðàæåíî äâèæåíèå ñòðóíû â òå÷åíèè ïîëóïåðè- 1 1 1 îäà. Ïðè äàëüíåéøåì óâåëè÷åíèè t îðìà ñòðóíû áóäåò ìåíÿòüñÿ â 0.25 0.5 0.75 1 x 0.25 0.5 0.75 1 x 0.25 0.5 0.75 1 x îáðàòíîì ïîðÿäêå, è â ìîìåíò t = 2ñåê ñòðóíà âåðíåòñÿ â èñõîäíîå ïîëîæåíèå. Ëèíåéíàÿ ÷àñòîòà êîëåáàíèé òàêîé ñòðóíû ν = 1/2 ö. -1 -1 -1 -2 -2 -2 -3 -3 -3 u u 3 t=0.9 cek 3 t=1 cek 2.4 Âûíóæäåííûå êîëåáàíèÿ ñòðóíû êîíå÷íîé äëèíû. 2 2 1 1 Îäíîðîäíûå ãðàíè÷íûå óñëîâèÿ (2a). 0.25 0.5 0.75 1 x 0.25 0.5 0.75 1 x -1 -1  äàííîì ñëó÷àå íåîáõîäèìî ðåøèòü íåîäíîðîäíîå óðàâíåíèå -2 -2 -3 -3 ∂2u ∂ 2u 2 − v2 2 = G èñ. 5: Íà ðèñóíêàõ èçîáðàæåíà îðìà ñòðóíû â ðàçëè÷íûå ìîìåíòû âðåìå- ∂t ∂x íè. Ëåâûé êîíåö ñòðóíû çàêðåïëåí, à ïðàâûé ñâîáîäíî äâèæåòñÿ, ïðè÷åì óãîë ñ íåíóëåâîé ïðàâîé ÷àñòüþ.  ñëó÷àå ñâîáîäíûõ êîëåáàíèé (8) òàêèå íàêëîíà ïðàâîãî êîíöà ðàâåí íóëþ âî âñå ìîìåíòû âðåìåíè; âíåøíèå ñèëû îò- ñóòñòâóþò. Âûáðàíû ñëåäóþùèå çíà÷åíèÿ ïàðàìåòðîâ: v = 2ì/ñåê, l = 1ì, h = ãðàíè÷íûå óñëîâèÿ ïðèâîäèëè ê ñîáñòâåííûì óíêöèÿì sin( πnx l ). (4 − π)/π 3 ì. Ïî ýòîé ïðè÷èíå ðàçëîæèì âûíóæäàþùóþ ñèëó â ðÿä ïî ýòèì ñîá- ñòâåííûì óíêöèÿì Íà÷àëüíàÿ îðìà ñòðóíû èçîáðàæåíà íà èñ. 3. Ïî îðìóëàì ∞ X πnx (16) ïîëó÷àåì: G(x, t) = γn (t) sin( ), n=1 l l/4 x2 ãäå 2 πx 1 Z αn = sin (n + ) dx 2 l Z πnx l 0 h l 2 γn (t) = G(x, t) sin( )dx, (18) Z l/2 l 2 (x − 2 ) l 0 l 2 πx 1 + sin (n + ) dx è ïðåäñòàâèì íàøå ðåøåíèå â âèäå ñëåäóþùåãî ðÿäà: l l/4 h l 2 ∞ 2 πnx 8l π 1 π 1 π 1 X = (n + ) − sin (n + ) sin (n + ) , u(x, t) = cn (t) sin( ) (19) hπ 3 (n + 12 )3 4 2 4 2 4 2 n=1 l 15 16
Страницы
- « первая
- ‹ предыдущая
- …
- 6
- 7
- 8
- 9
- 10
- …
- следующая ›
- последняя »