Уравнения математической физики. Уравнение колебаний струны. Хуснутдинов Н.Р. - 8 стр.

UptoLike

Составители: 

0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.1 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.2 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.3 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.4 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.5 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.6 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.8 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 0.9 cek
0.25 0.5 0.75 1
x
- 3
- 2
- 1
1
2
3
u
t= 1 cek
v = 2 / , l = 1 , h =
(4 π)/π
3
α
n
=
2
l
Z
l/4
0
x
2
h
sin
πx
l
(n +
1
2
)
dx
+
2
l
Z
l/2
l/4
(x
l
2
)
2
h
sin
πx
l
(n +
1
2
)
dx
=
8l
2
3
(n +
1
2
)
3
π
4
(n +
1
2
) sin
π
4
(n +
1
2
)

sin
π
4
(n +
1
2
)
,
β
n
=
2
vπ
Z
l
0
F (x) sin(
πnx
l
)dx = 0.
u(x, t) =
8l
2
3
X
n=0
sin
π
4
(n +
1
2
)
(n +
1
2
)
3
π
4
(n +
1
2
) sin
π
4
(n +
1
2
)

× cos(ω
n+
1
2
t) sin
πx
l
(n +
1
2
)
.
t
t = 2
ν = 1/2
2
u
t
2
v
2
2
u
x
2
= G
sin(
πnx
l
)
G(x, t) =
X
n=1
γ
n
(t) sin(
πnx
l
),
γ
n
(t) =
2
l
Z
l
0
G(x, t) sin(
πnx
l
)dx,
u(x, t) =
X
n=1
c
n
(t) sin(
πnx
l
)
    u                                          u                                     u                                                            l
                                                                                                                                          2                        πnx
                                                                                                                                              Z
   3                                           3                                     3
   2
                           t=0 cek             2
                                                                t=0.1 cek            2
                                                                                                         t=0.2 cek           βn     =                 F (x) sin(       )dx = 0.
   1                                           1                                     1
                                                                                                                                         vπ   0                     l
                                        x                                     x                                        x
  -1
          0.25     0.5         0.75   1
                                              -1
                                                   0.25   0.5    0.75       1
                                                                                    -1
                                                                                            0.25   0.5    0.75       1
                                                                                                                             Òàêèì îáðàçîì, ïîäñòàâëÿÿ ïîëó÷åííûå âûðàæåíèÿ â (11), ïîëó÷àåì
  -2                                          -2                                    -2                                       çàêîí êîëåáàíèÿ ñòðóíû ñ òàêèìè íà÷àëüíûìè äàííûìè
  -3                                          -3                                    -3
    u                                          u                                     u
                                                                                                                                          8l2 X sin π4 (n + 21 )
                                                                                                                                                ∞                                          
   3
                          t=0.3 cek
                                               3
                                                                t=0.4 cek
                                                                                     3
                                                                                                         t=0.5 cek                                                    π     1          π     1
   2                                           2                                     2                                         u(x, t) =                                (n + ) − sin     (n + )
   1                                           1                                     1                                                    hπ 3 n=0     (n + 12 )3     4     2          4     2
          0.25     0.5         0.75   1
                                          x        0.25   0.5    0.75       1
                                                                                x           0.25   0.5    0.75       1
                                                                                                                         x                                            
  -1                                          -1                                    -1                                                                       πx     1
  -2                                          -2                                    -2                                                 × cos(ωn+ 21 t) sin      (n + ) .
  -3                                          -3                                    -3
                                                                                                                                                              l     2
    u                                          u                                     u
   3
   2
                          t=0.6 cek
                                               3
                                               2
                                                                t=0.7 cek
                                                                                     3
                                                                                     2
                                                                                                         t=0.8 cek              Íà ðèñóíêå 5 èçîáðàæåíî äâèæåíèå ñòðóíû â òå÷åíèè ïîëóïåðè-
   1                                           1                                     1                                       îäà. Ïðè äàëüíåéøåì óâåëè÷åíèè t îðìà ñòðóíû áóäåò ìåíÿòüñÿ â
          0.25     0.5         0.75   1
                                          x        0.25   0.5    0.75       1
                                                                                x           0.25   0.5    0.75       1
                                                                                                                         x   îáðàòíîì ïîðÿäêå, è â ìîìåíò t = 2ñåê ñòðóíà âåðíåòñÿ â èñõîäíîå
                                                                                                                             ïîëîæåíèå. Ëèíåéíàÿ ÷àñòîòà êîëåáàíèé òàêîé ñòðóíû ν = 1/2 ö.
  -1                                          -1                                    -1
  -2                                          -2                                    -2
  -3                                          -3                                    -3
    u                                          u
   3
                          t=0.9 cek
                                               3
                                                                t=1 cek                                                      2.4        Âûíóæäåííûå êîëåáàíèÿ ñòðóíû êîíå÷íîé äëèíû.
   2                                           2
   1                                           1                                                                                             Îäíîðîäíûå ãðàíè÷íûå óñëîâèÿ (2a).
          0.25     0.5         0.75   1
                                          x        0.25   0.5    0.75       1
                                                                                x
  -1                                          -1                                                                                    äàííîì ñëó÷àå íåîáõîäèìî ðåøèòü íåîäíîðîäíîå óðàâíåíèå
  -2                                          -2
  -3                                          -3
                                                                                                                                                                    ∂2u      ∂ 2u
                                                                                                                                                                       2
                                                                                                                                                                         − v2 2 = G
èñ. 5:     Íà ðèñóíêàõ èçîáðàæåíà îðìà ñòðóíû â ðàçëè÷íûå ìîìåíòû âðåìå-
                                                                                                                                                                    ∂t       ∂x
íè. Ëåâûé êîíåö ñòðóíû çàêðåïëåí, à ïðàâûé ñâîáîäíî äâèæåòñÿ, ïðè÷åì óãîë
                                                                                                                             ñ íåíóëåâîé ïðàâîé ÷àñòüþ.  ñëó÷àå ñâîáîäíûõ êîëåáàíèé (8) òàêèå
íàêëîíà ïðàâîãî êîíöà ðàâåí íóëþ âî âñå ìîìåíòû âðåìåíè; âíåøíèå ñèëû îò-
ñóòñòâóþò. Âûáðàíû ñëåäóþùèå çíà÷åíèÿ ïàðàìåòðîâ:                                        v = 2ì/ñåê, l = 1ì, h =             ãðàíè÷íûå óñëîâèÿ ïðèâîäèëè ê ñîáñòâåííûì óíêöèÿì sin( πnx   l ).
(4 − π)/π 3 ì.                                                                                                               Ïî ýòîé ïðè÷èíå ðàçëîæèì âûíóæäàþùóþ ñèëó â ðÿä ïî ýòèì ñîá-
                                                                                                                             ñòâåííûì óíêöèÿì
   Íà÷àëüíàÿ îðìà ñòðóíû èçîáðàæåíà íà èñ. 3. Ïî îðìóëàì                                                                                                            ∞
                                                                                                                                                                       X                    πnx
(16) ïîëó÷àåì:                                                                                                                                             G(x, t) =          γn (t) sin(       ),
                                                                                                                                                                       n=1
                                                                                                                                                                                             l
                         l/4
                           x2                                                                                                ãäå
                                                 
                 2                  πx         1
                  Z
αn      =                     sin       (n + ) dx                                                                                                     2 l
                                                                                                                                                       Z
                                                                                                                                                                       πnx
                 l 0        h        l         2                                                                                             γn (t) =     G(x, t) sin(     )dx,                      (18)
                   Z l/2         l 2
                           (x − 2 )
                                                                                                                                                    l 0               l
                 2                          πx      1
        +                             sin       (n + ) dx                                                                    è ïðåäñòàâèì íàøå ðåøåíèå â âèäå ñëåäóþùåãî ðÿäà:
                 l l/4         h             l      2
                                                                                                                                                                        ∞
                          2                                                                                                                                                                 πnx
                                                                         
                       8l           π        1         π     1        π     1                                                                                           X
        =                             (n + ) − sin       (n + ) sin     (n + ) ,                                                                           u(x, t) =          cn (t) sin(       )    (19)
                 hπ 3 (n + 12 )3 4           2         4     2        4     2                                                                                           n=1
                                                                                                                                                                                             l


                                                      15                                                                                                               16