Уравнения математической физики. Уравнение колебаний струны. Хуснутдинов Н.Р. - 7 стр.

UptoLike

Составители: 

1 ±1
e
l
λ
e
l
λ
= e
l
λ
e
l
λ
= 0.
λ = µ
2
cos(µl) = 0,
µ =
π
l
(n +
1
2
), n = 0, ±1, ±2, . . . ,
c
2
= c
1
X(x) = 2ic
1
sin
πx
l
(n +
1
2
)
,
X(x) = 2c
1
cos
πx
l
(n +
1
2
)
.
n 1 n
n
µ =
π
l
(n +
1
2
), n = 0, 1, 2, . . . .
u(x, t) =
X
n=0
h
α
n
cos(ω
n+
1
2
t) + β
n
sin(ω
n+
1
2
t)
i
sin
πx
l
(n +
1
2
)
,
ω
n+
1
2
=
l
(n +
1
2
)
α
n
=
2
l
Z
l
0
f(x) sin
πx
l
(n +
1
2
)
dx,
β
n
=
2
vπ
Z
l
0
F (x) sin
πx
l
(n +
1
2
)
dx.
u(x, t) =
X
n=0
h
α
n
cos(ω
n+
1
2
t) + β
n
sin(ω
n+
1
2
t)
i
cos
πx
l
(n +
1
2
)
,
α
n
=
2
l
Z
l
0
f(x) cos
πx
l
(n +
1
2
)
dx,
β
n
=
2
vπ
Z
l
0
F (x) cos
πx
l
(n +
1
2
)
dx.
n = 0
vπ/2l
l
x = 0 x = l
f(x) = u(x, 0) =
x
2
h
, 0 x
l
4
(x
l
2
)
2
h
,
l
4
x
l
2
0,
l
2
x l
,
F (x) = u
t
(x, 0) = 0.
åòñÿ â âåðõíåé ïîëóïëîñêîñòè. Ýòî ñâÿçàíî ñ òåì, ÷òî êîíöû ñòðóíû           Òàêèì îáðàçîì, ïîëó÷àåì ñëåäóþùåå ðåøåíèå çàäà÷è êîëåáàíèÿ
îñòàþòñÿ ñâîáîäíûìè è "íå çàñòàâëÿþò" ñòðóíó ïåðåâîðà÷èâàòüñÿ.           ñòðóíû ñ ãðàíè÷íûìè óñëîâèÿìè (2 ):
                                                                                       ∞ h
         Ñâîáîäíûå êîëåáàíèÿ ñòðóíû êîíå÷íîé äëèíû.
                                                                                                                                             
  2.3                                                                                 X                                       i      πx     1
                                                                            u(x, t) =      αn cos(ωn+ 21 t) + βn sin(ωn+ 21 t) sin      (n + ) ,
            Îäíîðîäíûå ãðàíè÷íûå óñëîâèÿ (2 ), (2d).                                                                                  l     2
                                                                                      n=0

   àññìîòðèì, íàêîíåö, ñìåøàííûé òèï ãðàíè÷íûõ óñëîâèé (2 ) è           ãäå ωn+ 12 =   vπ
                                                                                                + 12 ), è
                                                                                         l (n
(2d). Íà îäíîì êîíöå çàäàíî óñëîâèå Äèðèõëå, à íà äðóãîì óñëî-
âèå Íåéìàíà. Óñëîâèå ñóùåñòâîâàíèÿ íåòðèâèàëüíîãî ðåøåíèÿ èìå-                                                  l                  
                                                                                                        2                πx       1
                                                                                                            Z
åò âèä (âåðõíèé çíàê ñîîòâåòñòâóåò óñëîâèþ (2 ), à íèæíèé óñëîâèþ                          αn     =          f (x) sin       (n + ) dx,             (16a)
                                                                                                        l  0              l       2
(2d))                                                                                                      Z l                       
                  1√    ±1√                                                                              2                  πx      1
                                                                                                                                                    (16b)
                                       √       √
                               =  ∓e −l λ
                                          ∓ e l λ
                                                  = 0.                                     βn     =            F (x) sin       (n + ) dx.
                el λ ∓e−l λ                                                                             vπ 0                 l      2

åøåíèÿ ýòîãî óðàâíåíèÿ îòëè÷àþòñÿ îò ïðåäûäóùèõ ñëó÷àåâ. Äåé-            ñëó÷àå ãðàíè÷íûõ óñëîâèé (2d) ïîëó÷àåì
ñòâèòåëüíî, ïîëîæèì λ = −µ2 , è òîãäà ïîëó÷èì óðàâíåíèå äëÿ íà-                           ∞ h                                                     
õîæäåíèÿ ñïåêòðà
                                                                                         X                                      i       πx      1
                                                                               u(x, t) =     αn cos(ωn+ 2
                                                                                                        1 t) + β n sin(ω    1
                                                                                                                         n+ 2 t)  cos      (n +   )  ,
                          cos(µl) = 0,                                                   n=0
                                                                                                                                         l      2
ðåøåíèå êîòîðîãî èìååò ñëåäóþùèé âèä:                                    ãäå
                     π    1                                                                                     l                  
                                                                                                        2                πx       1
                                                                                                            Z
                  µ = (n + ), n = 0, ±1, ±2, . . . ,
                     l    2                                                                αn     =          f (x) cos       (n + ) dx,
                                                                                                        l  0              l       2
è c2 = ∓c1 . Ýòî ïðèâîäèò ê òîìó, ÷òî äëÿ       ãðàíè÷íûõ óñëîâèé (2 )                                     Z l                       
                                                                                                         2                  πx      1
ïîëó÷àåì ðåøåíèå                                                                           βn     =            F (x) cos       (n + ) dx.
                                                                                                      vπ 0                 l      2
                                     πx         1
                   X(x) = 2ic1 sin      (n +      ) ,             (14)    îòëè÷èå îò ïðåäûäóùèõ ñëó÷àåâ ÷àñòîòà îñíîâíîãî òîíà ïðè n = 0
                                      l         2
                                                                         ðàâíà vπ/2l, ò.å. â äâà ðàçà ìåíüøå. Ïåðèîä êîëåáàíèé ñîîòâåòñòâåí-
à äëÿ óñëîâèé (2d), ñîîòâåòñòâåííî,                                      íî â äâà ðàçà áîëüøå. Äëÿ äåìîíñòðàöèè ýòîãî ðàññìîòðèì ñëåäóþ-
                                                                       ùèé ïðèìåð.
                                     πx     1                               Ïðèìåð 3. àññìîòðèì ñòðóíó äëèíîé l , çàêðåïëåííóþ â òî÷êå
                    X(x) = 2c1 cos      (n + ) .                  (15)
                                      l     2                            x = 0, è êàñàòåëüíàÿ ê êîòîðîé â òî÷êå x = l ðàâíà íóëþ, è ðàññìîò-
   Ëåãêî âèäåòü, ÷òî ïðè çàìåíå n → −1 − n óíêöèè (14) òîëüêî           ðèì òàêèå æå íà÷àëüíûå óñëîâèÿ êàê è â ïðèìåðå 2:
ìåíÿþò çíàê, à óíêöèè (15) îñòàþòñÿ íåèçìåííûìè. Ïî ýòîé ïðè-                                            
                                                                                                               x2
                                                                                                               h ,2   0 ≤ x ≤ 4l
÷èíå ìîæíî ðàññìàòðèâàòü òîëüêî íåîòðèöàòåëüíûå çíà÷åíèÿ n, è
                                                                                                          
                                                                                                          
                                                                                                                 l
                                                                                      f (x) = u(x, 0) =     (x− 2 )
ñïåêòð èìååò ñëåäóþùèé âèä:                                                                                    h    , 4l ≤ x ≤ 2l ,
                                                                                                                        l
                                                                                                          
                                                                                                               0,      2 ≤x ≤l
                                                                                                          
                        π     1
                   µ=     (n + ), n = 0, 1, 2, . . . .                                  F (x)     = u′t (x, 0) = 0.
                        l     2

                                13                                                                                 14